

RFP-2 CABIN BRANCH DRAFT FINAL MITIGATION PLAN October 2020 - Updated March 2022

and

RFP-2 CABIN BRANCH DRAFT FINAL MITIGATION PLAN

Table of Contents

1	Twe	lve Mitigation Plan Components3
	1.0	Project Objectives
	1.1	Site Selection
	1.2	Site Protection Instrument
	1.3	Baseline Information
	1.4	Determination of Credits
	1.5	Mitigation Work Plan6
	1.6	Maintenance Plan
	1.7	Performance Standards
	1.8	Monitoring Requirements8
	1.9	Long-term Management Plan8
	1.10	Adaptive Management Plan8
	1.11	Financial Assurance9
	1.12	Advance Mitigation
	1.13	References
LI	ST OF	TABLES
Ta	ble 1: N	Aitigation Credit Summary6
		FIGURES Cabia Prop ab Mitiration Project Cita Parada
FI	gure 1:	Cabin Branch Mitigation Project Site Parcels5
LI	ST OF	APPENDICES
ΑĮ	pendix	A: RFP-2 Cabin Branch Stream and Wetland Restoration Phase II Mitigation Design Report
ΑĮ	pendix	B: Option Agreement with Green Bloom MV Park LLC and Green Bloom MV Development, LLC
ΑĮ	pendix	C: Cabin Branch Function Based Rapid Stream Assessment
ΑĮ	pendix	D: Maryland Stream Mitigation Framework (MSMF) Stream Mitigation Calculator
Αį	pendix	E: Cabin Branch Land Use Vicinity Map

1 Twelve Mitigation Plan Components

In accordance with 33 CFR part 322 Compensatory Mitigation for Losses of Aquatic Resources dated April 10, 2008, the following section discusses the fundamental components that apply to the RFP-2 Cabin Branch mitigation site. Site specific fundamental components (objectives, baseline information, determination of credits, mitigation work plan, maintenance plan, and monitoring requirements) are described below and supporting data is provided in the RFP-2 Cabin Branch Stream and Wetland Restoration Phase II Mitigation Design Report provided in Appendix A.

1.0 Project Objectives

The project objectives are to provide compensatory mitigation for the MDOT SHA's Managed Lanes Study (MLS project) through stream restoration, wetland restoration, wetland buffer enhancement, and stream buffer enhancement.

The RFP-2 Cabin Branch project will restore approximately 7,173 linear feet of stream (plus an additional 810 linear feet on Pepco Property), restore and enhance approximately 4.44 acres of forested non-tidal wetlands, and enhance approximately 11.65 acres of non-tidal wetland and riparian buffers. The project is within the middle Potomac - Catoctin Watershed (Federal 8-digit HUC 02070008), Maryland's Seneca Creek Watershed (8-digit HUC 02140208) and Cabin Branch and its associated tributaries are classified as use I-P stream.

The project is located on a former golf course and the stream and adjacent riparian areas exhibit extensive perturbation as a result of past land use practices and increased watershed urbanization. A land-use map for the site is included in Appendix E. Site impacts include channel modifications, utility encroachment, stream piping, impoundment, channelization, bank armoring, channel blockages, and anthropogenic grading associated with historic golf course infrastructure. As a result, Cabin Branch is highly incised and exhibits minimal floodplain connection except during large flood events. Loss of vertical and lateral stability, combined with historic land use impacts, provides an opportunity to generate significant ecological uplift through large scale, multi-feature restoration in a highly urbanized area. The project also proposes daylighting and creation of natural stream channels for over 2,300 linear feet of currently piped water courses. Historic land use changes have also had significant impacts to the stream valley and what would have been forested floodplain complexes. The creation of water hazards and amenity ponds, in combination with stream channel incision, installation of subsurface drainages, and golf course grading has eliminated almost all wetlands within the project site. As a result of this mitigation project, six open water ponds will be converted to non-tidal forested wetlands that will provide significant ecological and system wide improvements, eliminate thermal pollution, and other important co-benefits to the site and watershed.

Stream design objectives include creation of a self-sustaining planform, cross-section, and profile utilizing natural channel design. The design incorporates priority II and III restoration that includes channel relocation and increases in bed elevation to ensure functioning bank height and entrenchment ratios that will increase floodplain connectivity to either the existing floodplain or proposed floodplain benches. Woody and other habitat structures will be utilized to further promote stability while increasing ecological uplift. Riffle/pool features have been designed to maintain bedform diversity, promote macroinvertebrate and fish habitat, as well as increase hyporheic exchange. This restoration design will result in eight functional assessment categories currently non-functioning or functioning at risk and

restore them to functioning. These include decreased bank height ratio, increased entrenchment ratios, increase floodplain drainage, increased vertical stability, riparian vegetation enhancement, increased lateral stability, aquatic habitat improvement including stable pool to pool spacing, greater pool depths, sediment and nutrient reductions, detritus retainment, and macroinvertebrate habitat. In addition, performance standards and monitoring requirements have been proposed that will validate these goals.

Wetland design objectives include the conversion of open water ponds to forested non-tidal wetlands. The existing ponds will be filled with suitable soil to the appropriate elevation necessary to ensure wetland hydrology. All subsurface and other drainage features will be disconnected, and vegetation will be planted based on reference wetlands in proximity to the project site. In addition to ground water hydrology the proposed wetlands have been integrated into the stream design and will receive flood inputs at larger than bankfull events. This wetland/stream integration provides the greatest overall benefit to the system.

1.1 Site Selection

Site selection for public mitigation sites was based on the traditional mitigation site search that is discussed in Section 5.3.1 of the Compensatory Mitigation Plan (CMP). The private mitigation sites were selected based on MDOT SHA's RFP process that is discussed in Section 5.3.2 of the CMP.

1.2 Site Protection Instrument

The property for the RFP-2 Cabin Branch mitigation project is owned by Green Bloom MV Park LLC and Green Bloom MV Development, LLC. HGS, LLC has obtained an option agreement and Right-of Entry Agreement with the owners that grants the rights to use the property for stream and wetland mitigation, a copy of the option agreement is provided in Appendix B. Pursuant to the Maryland Nontidal Wetlands Protection Act Rules (COMAR 26.23.04), and the Federal Clean Water Act, plus its implementing regulations at 33 CFR Part 332.7(a), the mitigation acreage for this project will be protected by implementing an easement in the form of the MDOT SHA's Grant of Mitigation Easement Template. This easement will grant rights to both United States Army Corps of Engineers (USACE) and the Maryland Department of Environment (MDE) as required under state and federal rules.

The permanent conservation easement will be recorded in the Land Records of the applicable jurisdiction. All natural resource functions, values and credits will be assigned to the MDOT SHA. The easement will provide project site access and control and allow the MDOT SHA to perform future inspections and maintenance responsibilities once the warranty period and any mandated post-construction monitoring period has expired. Documentation that the easement has been executed and recorded will be submitted to MDE and USACE within 60 days of construction completion. The easement will be acquired in accordance with applicable state and federal laws and policies, including but not limited to the Uniform Relocation Assistance and Real Property Acquisition Act (1970). Once the MDOT SHA determines the site is successful, ownership (in the form of a conservation easement) will be assigned or transferred to the MDOT SHA.

1.3 Baseline Information

The RFP-2 Cabin Branch mitigation site is located at 19550 Montgomery Village Avenue, Gaithersburg, Maryland 20886, and the site's subject parcels are highlighted in Figure 1 below. The existing conditions of the proposed mitigation area are described in Appendix A, this information includes wetland delineations, surveys, groundwater well data and more.

Figure 1: Cabin Branch Mitigation Project Site Parcels

1.4 Determination of Credits

Mitigation credit at the RFP-2 Cabin Branch site will be generated by providing functional uplift to approximately 7,173 linear feet of Cabin Branch and it's associated tributaries, restoring approximately 4.37 acres of forested non-tidal wetlands, and enhancing approximately 11.71 acres of non-tidal wetland and riparian buffers. The Stream Function-Based Rapid Assessment is included in Appendix C. Wetland mitigation credits at the RFP-2 Cabin Branch site were determined by calculating the area (acres) of each mitigation type against its ratio. Stream mitigation credits at the RFP-2 Cabin Branch site were calculated using the Maryland Stream Mitigation Framework (MSMF, USACE, 2022) which was recently provided in beta version. The Stream Mitigation Calculator spreadsheet, see Appendix D, was used to determine the mitigation potential of the RFP-2 Cabin Branch mitigation site, measured in functional feet. A functional foot is defined as a linear foot of stream of perfect quality (100% or 1.0 score) and a drainage area of 1 square mile. A functional foot relates to streams of any flow type and quality in a stream network and these factors influence the value of a linear foot of stream as a functional foot.

Table 1: Mitigation Credit Summary

ACTIVITY	LINEAR FEET (LF) ACREAGE (AC)	CREDIT RATIO	CREDIT	STREAM GAINS (FUNCTIONAL FEET)
STREAM RESTORATION	7,173 LF	1:1	7,173	5,149
STREAM RESTORATION (PEPCO PROPERTY)	810 LF	1:1	810	433
WETLAND RESTORATION (PFO)	4.38 AC	1:1	4.38	-
WETLAND ENHANCEMENT	0.06 AC	4:1	0.01	-
WETLAND BUFFER ENHANCEMENT	2.45 AC	15:1	0.16	-
TOTAL WETLAND CREDIT			4.55	-
RIPARIAN BUFFER (35 FOOT BUFFER)	8.27 AC	-	-	-
RIPARIAN BUFFER ENHANCEMENT	0.93 AC	15:1	0.06	-

1.5 Mitigation Work Plan

The RFP-2 Cabin Branch Stream Restoration and Wetland Mitigation Phase II project plan includes plan views with proposed grading and planform alignment, typical sections and details, and landscaping plant schedules and notes. The specific activities required to implement the restoration components of the RFP-2 Cabin Branch Mitigation Site are outlined in the Sequence of Construction on Sheet 15 of the RFP-2 Cabin Branch Stream Restoration and Wetland Mitigation Phase II Erosion & Sediment Control Plan dated. In general, the primary stream restoration objectives include a self-sustaining channel planform and geometry through increases in bank height ratios (BHR) and channel relocation where necessary. Changes in BHR will be accomplished with either raising the existing channel bottom elevation by modifying the channel longitudinal profile and/or in conjunction with floodplain grading. Profile changes will provide stable riffle/pool sequences that are currently missing from the existing channel. In areas where the current planform is outside of design standards, channel relocation will be completed in conjunction with floodplain grading and wetland restoration to provide the greatest ecological uplift to the overall riparian corridor. The proposed stream work will generally take the existing channels from "Not Functioning" to "Functioning". The highest functional uplift occurs in currently piped streams that will not be free flowing systems within the riparian/floodplain complex. This provides significant geomorphic improvements to these previously impacted systems. Stream and wetland buffer enhancement will also be completed (see planting plan) to establish a forested riparian complex within the Cabin Branch floodplain. Wetland restoration is being achieved by the filling of existing open water ponds to an elevation conducive of forested wetland establishment. In addition to POW to PFO conversion, and existing PEM wetland will be enhanced and included as part of a larger wetland restoration area. A detailed summary of all proposed restoration can be found in Appendix A: RFP-2 Cabin Branch Stream and Wetland Restoration Phase II Mitigation Design Report. All Mitigation work will be completed under the supervision of an approved qualified restoration specialist. All activities including site access, staging, and stockpiling will occur completely within the boundaries of the subject properties and Limits of Disturbance.

1.6 Maintenance Plan

HGS, LLC will be responsible for the maintenance of the mitigation site following construction. HGS, LLC will monitor and control invasive species within the project site per MDE's Performance Standards and Monitoring Protocol for Permittee Responsible Nontidal Wetland Mitigation Sites dated October 30, 2020. Both stream and wetland monitoring will be conducted for 10 years with reports submitted in Years 1, 3, 5, 7, and 10. However, starting in Year 5 if the site meets all final year performance standards for at least two (2) consecutive years the Permittee may request termination of additional monitoring. The planting plan calls for a higher than necessary density of planting to account for deer browse and die-off, if extensive deer browse of riparian plantings occurs, it will be assessed during post-construction monitoring. Installed structures, specific features in the floodplain (habitat depressions, microtopography, etc.) and within the channel (riffles, pools, grade control structures, etc.) will be observed after major storm events to determine if these features are functioning as designed. Post-construction, a report will be prepared to document any concerns or issues occurring within the project area that may require maintenance or more significant repairs. Adaptive management issues will be addressed by HGS, LLC in a timely manner. Any issues related to vegetation establishment or stream stability within the project area will be brought to the attention of both the USACE and MDE to determine if adaptive management may be warranted.

Following construction, the project will be monitored regularly to determine the progress and continued viability of the project. Monitoring will be conducted per Section 1.8 of this report or until the regulatory agencies agree that no further monitoring is needed. If remediation action is needed, HGS, LLC will prepare a remediation plan to be submitted for agency approval. HGS, LLC will be responsible for implementing any remedial actions.

The presence of invasive species as defined in Section I(A)(3) of *Performance Standards and Monitoring Protocol for Permittee Responsible Non-Tidal Wetland Mitigation Sites* (October 30, 2020) at this site will require invasive species management control. HGS, LLC will adhere Invasive Species Management protocol outlined in the monitoring plan as part of its regular maintenance activities and as outlined on Sheet 50 of the RFP-2 Cabin Branch Stream Restoration and Wetland Mitigation Phase II 65% Plans.

1.7 Performance Standards

Performance standards for the RFP-2 Cabin Branch mitigation site will be in accordance with the *Performance Standards and Monitoring Protocol for Permittee-responsible Nontidal Wetland Mitigation Sites in Maryland*, October 30, 2020. Site-specific monitoring and performance standards for stream and wetland restoration are developed based on the proposed stream restoration goals and objectives. The site-specific stream restoration monitoring and performance standards for the RFP-2 Cabin Branch mitigation site were developed to demonstrate achievement of the proposed restoration goals. Each wetland and stream restoration goal has one or more quantifiable and measurable objectives that are the basis of the proposed performance standards and monitoring requirements. Performance standards are outlined in the mitigation monitoring plan on sheet 50 of the RFP-2 Cabin Branch Stream Restoration and Wetland Mitigation Phase II 65% Plans. In addition to the performance standards, the stream will be evaluated at least twice during the monitoring period using the Maryland Stream Mitigation Framework calculator.

1.8 Monitoring Requirements

Monitoring requirements will be negotiated with the agencies and determined for the RFP-2 Cabin Branch mitigation site during the development of the Phase II Mitigation Design Plans. All mitigation sites will be evaluated in accordance with the *Performance Standards and Monitoring Protocol for Permittee-responsible Nontidal Wetland Mitigation Sites in Maryland*, October 30, 2020.

A monitoring plan for the RFP-2 Cabin Branch mitigation site is provided on Sheets 50-51 of the 65% Phase II plans to document site performance and achievement of approved performance standards. The approved maintenance and monitoring plan will be implemented, following the completion of construction, for the entire maintenance and monitoring period by HGS, LLC, until final regulatory release is secured from MDE and USACE. HGS, LLC will prepare and submit an as-built plan and Construction Completion Report for agency review and approval within 60 days of completing construction. HGS, LLC will begin monitoring the site immediately following the completion of construction and maintain the restoration as needed throughout the Maintenance and Monitoring period. At the first monitoring visits, HGS, LLC will examine the project's initial response to the restoration actions completed. HGS, LLC will provide a regular schedule for subsequent monitoring visits for data gathering, maintenance, and corrective action as needed. A flexible, adaptive management approach shall be applied to address any problems or deficiencies as they arise. Required maintenance activities will be implemented by HGS, LLC as needed ensuring that the site stay on a steady trajectory to achieving self-sustaining equilibrium and functionality. Annual monitoring reports will be prepared and submitted on or before December 31st in each monitoring year.

1.9 Long-term Management Plan

The purpose of the long-term management plan is to ensure that the RFP-2 Cabin Branch mitigation site is monitored and managed after the maintenance and monitoring period is complete and it has been transferred to the Long-Term Steward (LTS). In this case, since all property rights will be assigned to the MDOT SHA once the mitigation site has been determined to be successful, the MDOT SHA will be the LTS. The long-term management plan will establish objectives, priorities, and tasks to monitor, manage, and report on the wetlands and waters of the U.S. plus other valuable habitats on the RFP-2 Cabin Branch mitigation site after all performance standards have been achieved.

The long-term management plan will be prepared by HGS, LLC and implemented by MDOT SHA. The long-term management plan will be subject to final approval by MDE and USACE. During the 10-year monitoring period, the site's overall development and its trajectory toward achieving self-maintenance will be closely monitored and evaluated. Long-term maintenance requirements will be evaluated during or after monitoring year 5. The long-term management plan may be revised during or after monitoring year 5 to more accurately reflect long-term monitoring requirements as the end of the maintenance and monitoring period gets closer. Both MDE and USACE will have review and approval authority over any changes to the long-term management plan.

1.10 Adaptive Management Plan

HGS, LLC shall complete any remedial actions or adaptive management strategies deemed necessary for site success by the USACE and MDE and shall continue monitoring as required by the USACE and MDE until the site is deemed successful and approved by the USACE and MDE. Adaptive management measures

will be applied to ensure that project goals and objectives are achieved. Measures will include reviewing and assessing prevailing field conditions and data, adjusting plans or making field edits and/or post-construction corrective actions. Any construction-related adaptive management measures will be implemented under the direction of the project biologist and/or engineer in order to achieve specific design objectives within current site constraints. Monitoring data will be reviewed carefully to determine the need for any adjustments. Specific focus will be placed on making frequent observations immediately following construction until the site has stabilized and succeeding on a proper trajectory to self-maintenance.

HGS, LLC will advise MDE/USACE in writing of any material changes to the approved final mitigation plan and provide adequate justification. A material change would be one where the composition of the mitigation types change by more than about 10-15%, or change in such a way that the mitigation requirements can no longer be met. Any material changes between the approved design drawings and completed project will be shown on the as-built construction drawings and documented in the Construction Completion Report (CCR). Corrective actions implemented during the growing season will be formally documented in the corresponding annual monitoring report.

1.11 Financial Assurance

MDOT SHA frequently manages and implements roadway projects requiring compensatory mitigation, and has a funded program dedicated to the management and monitoring of its mitigation sites. MDOT SHA has committed funding for the design, construction, and monitoring of the mitigation site as part of the compensatory mitigation for the MLS project. MDOT SHA establishes upfront funding for monitoring based on estimates of past monitoring on similar projects. On an annual basis, SHA reviews its need for funding and includes costs associated with monitoring, management, and remediation. The state has allocated funds to complete the aspects of this project including mitigation and maintenance and has self-interest in completing the mitigation project, in accordance with performance standards. The RFP-2 Cabin Branch mitigation site is funded by MDOT SHA through a full delivery contract to provide stream and wetland mitigation credits. MDOT SHA is making payments to HGS, LLC according to a milestone payment schedule. Delivery milestones include Phase 2 mitigation plan approval, final design, construction, asbuilts, monitoring reports, and regulatory approval of mitigation site success.

The purpose of the financial assurance is to establish compliance with the Federal Compensatory Mitigation Rules at 33 CFR 332.3(n). The financial assurances will be posted to ensure a high level of confidence that the compensatory mitigation project will be successfully completed in accordance with its approved performance standards. The amount of the financial assurance will be based on the fair market costs to implement/construct the project and meet the approved performance standards. The financial assurance will utilize the USACE Baltimore District's Sample Compensatory Mitigation Performance Bond template, or another assurance form acceptable to the USACE and MDE, and the assurance amount will consider the relevant "Typical Compensatory Mitigation Cost Estimate Components" (USACE 2010). There are two (2) forms of financial assurances proposed for the RFP-2 Cabin Branch mitigation site:

(1) Construction Assurance and

(2) Maintenance and Monitoring Assurance (inclusive of Interim Monitoring). The construction estimate will include soil erosion and sediment controls, site preparation, earthwork, planting and seeding. The

maintenance and monitoring amount will include the cost to monitor the site, prepare annual monitoring reports and the projected costs associated with periodic maintenance activities. The construction portion of the financial assurance shall be released upon written approval from MDE/USACE indicating that construction is substantially complete in accordance with the approved plans. Assuming the project meets its annual performance-based milestones, HGS, LLC will request that the maintenance and monitoring portion of the financial assurance be reduced on an annual basis, such that it only covers the costs to monitor and maintain the site through the end of the maintenance and monitoring period. HGS, LLC will submit a spreadsheet-base estimate outlining proposed financial assurance cost components with the financial assurances under separate cover for review and approval by the USACE and MDE.

The financial assurances will be posted prior to construction and maintained until all permit requirements have been fully satisfied and the USACE and MDE releases the permittee from its mitigation requirements under the issued permits. Final release of the maintenance and monitoring portion of the financial assurance shall occur once the final submitted annual report to MDE/USACE demonstrates that the success criteria approved for the entire project have been satisfied.

1.12 Advance Mitigation

Advanced Mitigation is no longer being proposed.

1.13 References

Maryland Department of Environment (MDE), 2008. Code of Maryland Title 5. October 6, 2008. MD Nontidal Wetlands Protection Act, COMAR 26.23.

Maryland Department of Environment (MDE). 2018. Performance Standards and Monitoring Protocol for Permittee-responsible Nontidal Wetland Mitigation Sites.

Maryland Department of Natural Resources (MDNR), 2015. Wildlife and Heritage Division – Endangered and Nongame Species Program. Available at:

http://dnr2.maryland.gov/wildlife/Pages/plants wildlife/rte/espaa.aspx

Maryland Department of Transportation State Highway Authority. Grant of Mitigation Easement. Form SHA 63.11-25 01/03/06.

Maryland Invasive Species Council. 2005. Invasive Species of Concern in Maryland. Maryland State Highway Administration. 2003. Integrated Vegetation Management Manual for Maryland Highways.

Rosgen, D. L. 2006. Watershed Assessment of River Stability and Sediment Supply (WARSSS), 1st

Uniform Relocation Assistance and Real Property Acquisition Act (1970). 42 USC Ch. 61

USACE, 2022. The Maryland Steam Mitigation Framework Version 1 (MSMF V.1.) Draft Manual for Stream Impacts and Stream Mitigation Calculation (Draft version).

USACE, 2010. Typical Compensatory Mitigation Cost Estimate Components. July 15, 2010.

U.S. Department of Transportation Federal Highway Administration (FHWA) & Maryland Department of Transportation State Highway Administration (MDOT SHA). April 15, 2020. Draft Compensatory Mitigation Plan.

U.S. Department of Transportation Federal Highway Administration (FHWA) & Maryland Department of Transportation State Highway Administration (MDOT SHA). TBD. Final Compensatory Mitigation Plan.

Appendix A: RFP-2 Cabin Branch Stream and Wetland Restoration Phase II Mitigation Design Report

RFP-2 Cabin Branch Stream and Wetland Restoration Phase II Mitigation Design Report

Cabin Branch and Unnamed Tributaries

19550 Montgomery Village Avenue, Montgomery County, Maryland 20879

Prepared By:

HGS LLC – A RES Company 5367 Telephone Road Warrenton, VA 20187

Corporate Headquarters 5020 Montrose Blvd. Suite 650 Houston, TX 77006 Main: 713.520.5400

65% DRAFT; UPDATED 3/10/2022

I hereby certify that these documents were prepared or approved by me, and that I am a duly licensed professional engineer under the laws of the state of Maryland.

License No. 52852, Expiration Date 6/14/2022.

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Table of Contents

Project Summary	4
1.1. Introduction 1.2. Site Selection 1.3. Existing Site Conditions Existing Stream Assessment	6
1.4. Existing Site Assessment 1.5. Channel Pattern 1.6. Channel Profile 1.7. Channel Cross-Section Stream Design	3 3
1.8. Design Philosophy and Approach 1.9. Proposed Channel Cross-Section Design 1.10. Proposed Profile Design 1.11. In-stream Structures 1.12. Riffle Mix Design 1.13. Proposed Outfall Protection Sizing 1.14. Hydraulics and Hydrology Modeling 1.15. Floodplain Study Wetland Design	
1.16. Wetland Restoration Feasibility Analysis	17 18
Appendix A: Wetland Delineation Report Package	A-1
Appendix B: BANCS Summary	B-1
Appendix C: NOAA Atlas 14 Documentation, TR-55 and Outputs TR-20 Outputs.	
Appendix D: Floodplain Impacts Analysis	D-1
Appendix E: Well Data	E-1
Appendix F: Wetland Water Budgets	F-1
Appendix G: Sample Easement Agreement Document	G-1
Appendix H: 2/10-Yr Shear Stress and 2/10-Yr Velocity	H-1

Cabin Branch Stream and Wetland Restoration Design Report
Cabin Branch and Unnamed Tributaries
Montgomery County, Maryland

List of Figures

Figure 1: Parcel Boundaries as shown on Google Earth	4
Figure 2: Project Location Map (Not to Scale)	
Figure 3: Watershed map from StreamStats	7
Figure 4: Representative Photo of Reach 1 at the Outlet of a Piped Tributary	7
Figure 5: Existing Concrete Pedestrian Bridge that has Collapsed	7
Figure 6: Existing Impoundment for Irrigation along Reach 2	7
Figure 7: Looking Along the Path of a Dilapidated Storm Sewer PipePipe	7
Figure 8: Representative Photo of Reach 2	7
Figure 9: Existing Pond with Failing Riser	7
Figure 10: Collapsed Pedestrian Bridge and associated Debris Jam along Reach 1 (Image 1) and Beaver Dam along Reach 2 (Image 2, Beavers have since vacated the site) Figure 11: Existing Cross-Section Location Map	8
Figure 12: Site Specific Bankfull Area Curve in Comparison to Selected Regional Curves	
Figure 13: Reach Map for Cabin Branch Stream Restoration	
List of Tables	
Table 1: Ex. Channel Cross-Sections Bankfull Area and Width Summary	9
Table 2: Proposed Channel Cross-Section Geometry	.12
Table 3: Proposed Stream Planimetric Design Limits by Reach	.13
Table 4: Summary of Scour Calculations and Stone Sizes	
Table 5: Summary of Reach Max Shear and Largest Moveable Particle Size in Comparison to	
D84/D100 of Proposed Riffle Mix Error! Bookmark not define	
Table 6: 2, 10, & 100-Yr Peak Discharges *For the Floodplain Study/Analysis the 100-Yr flows	
from the previously approved study were used	
Table 7: Wetland Mitigation Summary	.17

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Project Summary

1.1. Introduction

The project area covers four (4) parcels, two owned by USL2 MR Montgomery Village Business TR & two owned by Potomac Electric Power Company totaling 128.39-acres (outlined in Figure 1). The site is generally located at 19550 Montgomery Village Avenue, Gaithersburg, Montgomery County, Maryland. RES is seeking agreements with both landowners for access and easements, a sample easement agreement document in included in Appendix G.

Cabin Branch Runs East to West along the length of the project area. There are five (5) unnamed tributaries draining to Cabin Branch in the project area. Of the five tributaries carrying flow to Cabin Branch, three (3) of these are currently piped and one is routed along a concrete channel. Cabin Branch joins Great Seneca Creek approximately half a mile downstream of the project terminus, before draining ultimately to the Potomac River. In addition to the existing streams the site contains nine (9) ponds that were constructed as amenity ponds for the golf course.

This site contains approximately 5,634 feet of Cabin Branch, 1,256 feet of unpiped unnamed tributaries, and 2,000 feet of pipe/channelized unnamed tributaries to Cabin Branch. The stream restoration is being proposed on both Cabin Branch (Reach 1 & 2) and the unnamed tributaries to Cabin Branch (Tributaries 1-5) within the identified parcels and shown in Figure 1. The wetland restoration included in this mitigation plan covers six (6) ponds.

This report discusses the background information and basis of design for the proposed stream and wetland restoration.

Figure 1: Parcel Boundaries as shown on Google Earth

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

1.2. Site Selection

The Cabin Branch Stream Mitigation site (see Figure 2) was selected because it provides an opportunity to conduct large-scale, multi-feature restoration in a highly urbanized area and the proposed stream segments have the potential for significant ecological uplift upon restoration. Located within the fairway of a former golf course, the proposed restoration reaches have experienced severe channel degradation and diminished water quality from historic land use practices. Converting the adjacent land use from golf course fairways and greens into a restored floodplain with wetland features and a forested riparian buffer will greatly benefit Cabin Branch. Reestablishing Cabin Branch's connection to a restored floodplain and wetlands will enhance the treatment of water within the stream and its tributaries resulting in improved water quality within the system. Relocating the stream channel to improve hydrology and morphology of the stream can be done with minimal impact to fringing forested area since the historic fairway contains few native trees.

Figure 2: Project Location Map (Not to Scale)

Cabin Branch is a third-order major tributary with a drainage area of 4.3 square miles of urban development with little or no stormwater management. The Montgomery County Department of Environmental Protection has classified the Cabin Branch sub-watershed as in 'Fair' condition based on biological monitoring data. Conditions within the stream channel exhibit significant bank erosion, over-widening and incision. Continued development within the watershed has disrupted the hydrology of the stream and caused out-of-bank flood events. Tributaries flowing

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

into Cabin Branch are degraded or piped channels, and as a result, are experiencing active head cuts and erosion. Further information is provided in the Existing Stream Assessment Section.

During the feasibility review of the Cabin Branch Project, several potential wetland restoration areas were identified and further assessed. The proposed wetland restoration areas were chosen based on the presence existing ponds that were no longer providing benefit to the property, presence of hydric soils, depth of groundwater, landscape position, and current conditions. Furthermore, due to the existing pond configuration the proposed wetland restoration area will require minimal grading to reconnect and redistribute hydrology which will increase both short and long-term success.

1.3. Existing Site Conditions

The proposed restoration project lies within the floodplain of Cabin Branch and its unnamed tributaries on an abandoned golf course property. Surrounding the project are existing and proposed urban residential areas. The site is currently in a transitional period from an intensively managed golf course, to a naturalized meadow and early growth forest. Much of the site is comprised of grassland species such as meadow fescue (Festuca pratensis), red top grass (Agrostis gigantea), common milkweed (Asclepias syriaca) and species of golden rod (Solidago spp.). Dense thickets of box elder (Acer negundo) have begun growing within areas in the eastern project limits. A tree line exists adjacent to Cabin Branch throughout the site and contains species such as black willow (Salix nigra), pin oak (Quercus palustris), and American sycamore (Platanus occidentalis). Additionally, invasive species such as Japanese stiltgrass (Microstegium vimineum), Japanese honeysuckle (Lonicera japonica), small carpet grass (Arthraxon hispidus), and Chinese bushclover (Lespedeza cuneate) were observed within the project limits. However, these species were not observed to be dominant throughout the site, nor were any large monocultures observed. The site also has nine (9) golf course amenity ponds in various conditions and provide very little ecological resource. A Waters of the United States (WOUS) Delineation was completed by RES in September 2020. A copy of the Wetland Delineation Report is included in Appendix A. The entire project area is underlain by hydric Hatboro Silt Loam soils; however, the landscape, soils, and hydrology are highly disturbed and manipulated due to its previous development as a golf course. After construction, the limits of disturbance will be revegetated to re-establish riparian vegetation in areas that are impacted.

Cabin Branch drains approximately 2,800-acres by the time it leaves the project area, as shown in Figure 3. The existing drainage area is approximately 21.3% impervious based on the 2011 National Land Cover Database (NLCD). On the site, water is generally flowing from east to west. The topography is flat in the fielded areas with steep valley walls.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Figure 3: Watershed map from StreamStats.

Cabin Branch and Tributary 4 are the two streams currently daylighted on the site, both are incised with bank-height ratios greater than 1.5. Cabin Branch has a very low sinuosity, has been tightly pinched between multiple utilities and the golf course, and has numerous irrigation and pedestrian crossing structures that are in various stages of disrepair. The other tributaries (1-3 & 5) have either been piped underneath the existing golf course or have been routed through a concrete channel. Additionally, a section of Cabin Branch has been impounded to create a source of water for the irrigation system that previously served the golf course. Additionally, nine (9) ponds are onsite to provide aesthetics to the golf course. These ponds provide very minimal habitat and have failed structures. Figures 4-9 show photos of the existing streams and ponds.

Figure 4: Representative Photo of Reach 1 at the Outlet of a Piped Tributary

Figure 5: Existing Concrete Pedestrian Bridge that has Collapsed

Figure 6: Existing Impoundment for Irrigation along Reach 2

Figure 7: Looking Along the Path of a Dilapidated Storm Sewer Pipe

Figure 8: Representative Photo of Reach 2

Figure 9: Existing Pond with Failing Riser

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Existing Stream Assessment

1.4. Existing Site Assessment

Existing site assessments including a geomorphic assessment and level III analyses were completed on Cabin Branch and Tributary 4 in December 2019; Tributaries 1-3 and 5 are currently piped. The Bank Assessment for Non-point source Consequences of Sediment (BANCS) summary is included in Appendix B.

1.5. Channel Pattern

The sinuosity of both existing streams is approximately 1.13. The sinuosity will be increased targeting somewhere between 1.2 & 1.4 depending on channel size.

1.6. Channel Profile

The existing channel profile along Cabin Branch shows very little riffle pool sequencing, facet features, and is mostly plainbed. This is partially due to the numerous debris jams (see figure 10), impoundments and their associated backwaters along Cabin Branch. Tributary 4 has more existing facet features, however, has multiple headcuts that provide vertical instability along the system.

Figure 10: Collapsed Pedestrian Bridge and associated Debris Jam along Reach 1 (Image 1) and Beaver Dam along Reach 2 (Image 2, Beavers have since vacated the site)

1.7. Channel Cross-Section

Channel cross-sections were collected using a rod and level in January-March 2020. Channel cross-sections were taken at locations where there appeared to be good field indicators of bankfull along Cabin Branch (CB) and Tributary 4 (T4). Additionally, supplemental cross-sections were taken along Tributaries 1 & 3 upstream (US) of the crossings under Stewartown Road, See Figure 11. Table 1 below summarizes the geomorphic data collected from the cross-sections.

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Figure 11: Existing Cross-Section Location Map

xs	Drainage Area (AC)	Bkf Width (FT)	Bkf Depth (FT)	Bkf Area (SF)	W/D	Aib (SF)	Aib/Bkf Area (%)
CB-1	2246.60	17.1	2.29	39	7.47	19	49%
CB-2	2349.92	20.8	1.95	40.5	10.67	19	47%
CB-3	2351.71	21.30	1.89	40.2	11.27	19.3	48%
CB-4	2379.92	20.3	1.94	39.3	10.46	12.8	33%
CB-5	2413.01	20.20	1.7	34.4	11.88	-	-
CB-6	2693.14	19.04	2.19	41.8	8.69	20.5	49%
CB-7	2766.25	22.5	2.03	45.8	11.08	25	55%
CB-8	2767.66	20.20	2.05	41.5	9.85	22.4	54%
US-1	56.07	6.57	0.65	4.25	10.11	-	NA
US-2	58.10	8.14	0.32	2.61	25.44	-	NA
US-3	84.15	6.53	0.64	4.2	10.20	-	NA
US-4	86.70	4.69	0.54	2.53	8.69	-	NA
US-5	76.18	5.52	0.5	2.77	11.04	-	NA
T4-1	82.70	3.51	0.44	1.53	7.98	-	NA
T4-2	84.55	2.93	0.55	1.62	5.33	-	NA
T4-3a	58.59	4.24	0.47	1.99	9.02	-	NA
T4-3	50.08	4.59	0.47	2.18	9.77	-	NA

Table 1: Ex. Channel Cross-Sections Bankfull Area and Width Summary

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

The collected channel cross-section data showed that the channels are incised. Smaller tributaries were completely entrenched. Cabin Branch had sections that were entrenched, with entrenchment ratios as low as 1.4 and areas that were not entrenched, even though the bankfull channel was disconnected from the floodplain for the entire reach. The average cross-sectional area along Cabin Branch was about 2.1 times larger than the bankfull area, thus making it capable of passing flows approximately 3.6 times larger than the bankfull discharge. Tributary 4 has an existing cross-sectional area about 3.2 times the bankfull area and can pass approximately 7.5 times the bankfull discharge before overtopping the banks.

Based upon the collected data and field observations the reaches have a mixture of segments that are transitioning from a Rosgen C to a Rosgen F and others that are Rosgen F, or a Stage IV, in the channel evolution model (CEM).

Stream Design

1.8. Design Philosophy and Approach

After the initial site walk it was apparent that the site and stream had many challenges facing restoration on the proposed property, however, its location within an urban environment and the wide area of undeveloped adjacent floodplain provided an optimal location for true ecological uplift. Generally, the existing Cabin Branch channel has very little sinuosity and poor riffle-pool sequencing. The upper one-third of Cabin Branch had been excessively riprapped over the years to provide bank protection, whereas the lower two-thirds of Cabin Branch as well as Tributary 4 exhibited high levels of bank erosion and over widening.

With these observations in mind it was determined that in the upper one-third of the stream where the banks were currently protected the best restoration method would be to keep the existing alignment but cut down the bank height to provide floodplain access as well as use structures to modify the existing profile to create a riffle-pool sequence within the existing channel. Keeping within the existing channel footprint also minimizes additional clearing and potential impacts. In the lower two-thirds of the stream where the banks weren't protected and were highly eroded there were also numerous utilities running adjacent to and crossing the stream. Due to these factors it was decided to design a new alignment that could create higher sinuosity, create a higher functioning cross-section, better floodplain access and a better relationship to the utilities crossing the stream. This would create a Rosgen B/C channel in the upper third and a Rosgen C in the lower two thirds.

Tributary 4's drainage comes through two outfalls and at the outfalls of both pipes the channel is deeply incised and has no floodplain connectivity. Additionally, Tributary 4 crosses two large gas-lines, runs near electrical distribution poles and runs over multiple sanitary sewers lines, further downcutting or over-widening in this channel could create damaging impacts to the adjacent infrastructure. With these additional factors in mind, it was decided to bring the channel up as much as possible connecting it the existing floodplain or to a created floodplain bench, allowing for ecological uplift and infrastructure protection simultaneously. The vertical rise in the profile was combined with a modified horizontal alignment to provide higher sinuosity and flow control to mimic a more natural channel. This design philosophy will create a Rosgen C channel in Tributary 4.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

1.9. Proposed Channel Cross-Section Design

The existing cross-section drainage areas and associated bankfull areas collected in the field were used to create a site-specific bankfull area curve, which was then compared with relevant regional curves, these curves are all shown in Figure 12. This comparison showed a good correlation of the data collected (R^2 = .96) as well as in comparison to the selected regional curves.

Figure 12: Site Specific Bankfull Area Curve in Comparison to Selected Regional Curves

Using the drainage area to the downstream terminus of each Reach/Sub-Reach (as shown in Figure 13), existing channel cross-section data and site specific/regional curves, target bankfull widths, areas, max depths and discharges were determined for each proposed Reach/Sub-reach. Proposed channel cross-sections were engineered to achieve the target bankfull area, desired geometry and discharge. The proposed channel cross-section geometry is summarized in Table 2; the complete geometry is provided in the plans.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Figure 13: Reach Map for Cabin Branch Stream Restoration

	CROSS-SECTION GEOMETRY										
REACH	RIFFLE BOTTOM WIDTH (FT)	MAX RIFFLE DEPTH* (FT)	RIFFLE BANKFULL WIDTH (FT)	POOL BANKFULL WIDTH (FT)	MAX POOL DEPTH (FT)	RIFFLE BANKFULL AREA (SF)	BANKFULL DISCHARGE (CFS)				
1	12.0	2.3	23.2	27.8	4.3	40.2	190.6				
2	14.0	2.4	25.6	30.7	4.6	47.1	236.5				
T1A	4.2	0.6	6.6	7.9	1.2	3.2	8.5				
T1B	4.2	0.6	6.6	7.9	1.2	3.2	8.9				
T1-1	3.0	0.5	5.0	6.0	0.9	2.0	2.5				
T2	1.7	0.3	3.2	3.8	0.6	8.0	1.4				
T3A	2.2	0.5	4.6	5.5	0.9	1.7	2.9				
T3B	3.0	0.7	6.2	7.4	1.2	3.0	7.4				
T3-1	2.2	0.5	4.6	5.5	0.9	1.7	3.8				
T4A	3.0	0.5	5.0	6.0	0.9	2.0	7.2				
T4B	3.6	0.6	3.6	4.3	1.2	2.8	11.3				
T4-1	2.0	0.4	3.8	4.6	0.8	1.2	4.5				
T5	2.2	0.5	4.6	5.5	0.9	1.7	5.4				

Table 2: Proposed Channel Cross-Section Geometry

Using the design bankfull widths and proprietary dimensionless ratios developed from previously collected reference reach data by RES, the following (see Table 3) Riffle Length Minimums/Maximums, Pool Length Minimums/Maximums and Minimum Radius of Curvatures were calculated and used in laying out the proposed alignments. The proposed alignments create approximately 8,615 LF of restored stream channel, excluding easements and the PEPCO property generates 7,350 LF of mitigation stream length.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

PLANIMETRIC DESIGN LIMITS

REACH	MIN RIFFLE LENGTH (FT)	MAX RIFFLE LENGTH (FT)	MIN POOL LENGTH (FT)	MAX POOL LENGTH (FT)	MIN RADIUS OF CURVATURE (FT)
1	23.2	78.9	27.8	113.7	58.0
2	25.6	87.0	30.7	125.4	64.0
T1A	6.6	22.4	7.9	32.3	16.5
T1B	6.6	22.4	7.9	32.3	16.5
T1-1	5.0	17.0	6.0	24.5	12.5
T2	3.2	10.9	3.8	15.7	8.0
T3A	4.6	15.6	5.5	22.5	11.5
T3B	6.2	21.1	7.4	30.4	15.5
T3-1	4.6	15.6	5.5	22.5	11.5
T4A	5.0	17.0	6.0	24.5	12.5
T4B	3.6	12.2	4.3	17.6	9.0
T4-1	3.8	12.9	4.6	18.6	9.5
T5	4.6	15.6	5.5	22.5	11.5

Table 3: Proposed Stream Planimetric Design Limits by Reach

1.10.Proposed Profile Design

To achieve a stable stream system this restoration plan was completed using natural channel design principles and utilizes the installation of in-stream structures and channel grading to control elevation and flow patterns. Riffle facet slopes are set to mimic the valley slopes and associated valley slope changes, while pools are flat. In-stream structures, such as Rock Offset Cross Vanes, were utilized to stabilize confluences and to maintain ideal riffle facet slopes in each reach while keeping the proposed stream at an elevation that could ultimately be tied into the downstream and upstream reaches and created no rise in the 100-yr WSE. Pool run and glide slopes are not engineered but left to naturalize in the field. Pool max depths are designed to occur at the mid-point of the pools.

1.11 In-stream Structures

In-stream structures are used for both vertical and horizontal stabilization of the stream channels. These structures redirect the erosive forces of the water away from the outer bend of the stream helping to minimize bank erosion. Vertically they prevent the migration of headcuts and other instabilities through the system, as well as concentrating flows to maintain pool features. Since the stream contracts as the water passes over the structure, contraction scour calculations are used to determine the structure depth and stone size for the structure. For the purposes of these calculations the Offset Cross-vane data is used as it contracts the flow the greatest which would in return create the highest scour. Contraction scour calculations for instream structures are detailed in the Stream Restoration Design National Engineering Handbook; Technical Supplement 14-B. The equation and a summary of the calculations and the associated rock sizes are summarized in Table 4 below.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

$$Z_{S} = \left(-0.0118 + 1.394 \left(\frac{h_{d}}{W}\right) + 5.514 \left(\frac{Sq_{10}}{W^{\frac{3}{2}}\sqrt{32.2}}\right)\right)W$$

Where:

 $Z_s = depth \ of \ scour, ft$

 $h_d = height of structure drop, ft$

W = Average Active Channel Width, ft

 $q_{10} = 10 yr \ design \ flow \ per \ unit \ width \ over \ structure \ invert, cfs/ft$

 $S = average \ bankfull \ slope, ft/ft$

	RIFFLE BASE WIDTH	MAX STRUCTURE	BANKFULL	STRUCTURE	DESIGN FLOW/INVERT	FACTORED -SCOUR DEPTH (F-	MIN. ROCK HEIGHT (A)	MIN. ROCK DEPTH (B)	MIN. ROCK LENGTH (C.)
REACH	(W) (FT)	DROP (HD) (FT)	SLOPE (S) (FT/FT)	WIDTH (FT)	WIDTH (CFS/FT)	ZS) (FT)	(FT)	(FT)	(FT)
1	12	0.5	0.0048	5.8	33	0.90	0.4	0.7	0.9
2	14	0.5	0.0058	6.4	36	0.88	0.4	0.7	0.9
T1A	4.2	0.5	0.0087	1.65	6	1.01	0.5	0.8	1.0
T1B	4.2	0.5	0.0096	1.65	6	1.01	0.5	0.8	1.0
T1-1	3	0	0.0028	1.25	8	-0.03	0.0	0.0	0.0
T2	1.7	0.25	0.011	0.8	13	0.65	0.3	0.5	0.6
T2	1.7	0.15	0.0212	0.8	13	0.58	0.3	0.4	0.6
T3A	2.2	0.1	0.006	1.15	9	0.22	0.1	0.2	0.2
T3B	3	0.5	0.008	1.55	6	1.04	0.5	0.8	1.0
T3-1	2.2	0.5	0.0101	1.15	9	1.09	0.5	0.8	1.1
T4A	3	0.75	0.0522	1.25	8	1.87	0.9	1.4	1.9
T4A	3	0.5	0.0235	1.25	8	1.15	0.6	0.9	1.2
T4B	3.6	0.5	0.0215	0.9	11	1.17	0.6	0.9	1.2
T4-1	2	0.25	0.0453	0.95	11	0.98	0.5	0.7	1.0
T5	2.2	0.25	0.0233	1.15	9	0.68	0.3	0.5	0.7
T5	2.2	0.5	0.0160	1.15	9	1.14	0.6	0.9	1.1

Table 4: Summary of Scour Calculations and Stone Sizes.

1.12. Riffle Mix Design

In a riffle-pool system the slope of a stream is taken in the riffle, therefore, the riffle stone mix must be designed to appropriately handle the erosive forces the stream exerts. The intention of this is to create a threshold design mix to minimize the risk of incision or vertical scour in the future. This project utilizes two Riffle Mixes. For the first Riffle Mix, Mix 1 the D100 of the designed mix is 256mm, and the D84 is 121.5mm, with the largest moveable particle size based on the Rosgen and Colorado Curve for all sub-reaches utilizing this mix being 109mm, therefore, below the D100 of the proposed design mix and close to the D84. For the second Riffle Mix, Mix 2, the D100 of the designed mix is 180mm, and the D84 is 85, with the largest

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

moveable particle size based on the Rosgen and Colorado Curve for all sub-reaches being 60mm, therefore, below the D100 of the proposed design mix. In this mix the D84 is higher than the largest moveable particle sizes by a larger amount given the variable flow and flashiness of the reaches where this mix is utilized. Table 5 shows a summary of each reach's max shear and the associated largest moveable particle in comparison to the Design D100 of the applicable proposed Riffle Mix.

REACH	Max BKF Shear Stress (lb/sq ft)	Largest Moveable Particle - Shields (mm)	Largest Moveable Particle - Rosgen (mm)	Design Mix D84 (mm)	Design Mix D100 (mm)
1	0.50	38	91	121.54	256
2	0.64	49	109	121.54	256
T1A	0.26	19	56	85	180
T1B	0.28	21	60	85	180
T1-1	0.07	5	20	85	180
T2	0.16	12	40	85	180
T3A	0.13	9	34	85	180
T3B	0.23	17	52	85	180
T3-1	0.22	16	49	85	180
T4A	0.55	42	98	121.54	256
T4B	0.60	46	105	121.54	256
T4-1	0.63	48	108	121.54	256
T5	0.45	34	84	121.54	256

1.13. Proposed Outfall Protection Sizing

At all daylighted storm sewer pipes and existing outfalls tying into the heads of restored channels, outfall protection was designed in accordance with D-4-2 Standards and Specifications for Plunge Pool as detailed in the 2011 Maryland Standards and Specifications for Soil Erosion and Sediment Control. The facilities (Type I) were sized based upon the max pipe discharge and an assumed tailwater depth of 0.8 times the pipe diameter; details are provided in the construction plans. Max pipe discharge was calculated using the pipes slope, manning's n and diameter.

1.14. Hydraulics and Hydrology Modeling

Hydrology models were used to estimate the 2-Yr, 10-Yr and 100-Yr flows. Zoning data was used to estimate base land use for ultimate development conditions, which was primarily Urban Residential, with some industrial and minor open space. Rainfall depths were based on NOAA Atlas 14 for Montgomery County. WinTR-20 was used to characterize each sub-drainage area to develop a composite curve numbers (CN) and time of concentrations (TC). Drainage Area delineations, zoning maps, and TC flow paths are all provided in the plans. NOAA Atlas information, Win TR-55 & TR20 outputs are all provided in Appendix C. The output flows from WinTR-20 will be used in the HEC-RAS models for existing and proposed conditions for the change analysis for 2/10-Yr shear stress and 2/10-Yr velocity as required by Maryland

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Department of the Environment. The preliminary 2/10-Yr shear stress and 2/10-Yr velocity Tables can be found in Appendix H. 2 The 100-Yr flows were calculated however, for the purposes of the Floodplain Study the flows used and approved in the previous study in this area will be used in order to properly determine the impacts of this project to the 100-Yr WSE.

Reach	Max Inflow	2_Yr	10_Yr	100_Yr
Reach 1	NA	1106.9	2192.5	4215.6*
Reach 2	NA	1155.2	2276.3	4364.6*
Trib 1	201.66	118.5	203.9	333.4
Trib 2	33.55	21.6	33.9	50.7
Trib 3	59.39	106.0	180.2	294.5
Trib 4	106.21	132.4	228.6	370.6*
Trib 5	86.96	78.82	142.25	275.54

Table 5: 2, 10, & 100-Yr Peak Discharges

1.15. Floodplain Study

The proposed project is located within a FEMA Zone AE. Floodplain Study (FPDS No. 281949) established a revised 100-yr floodplain based upon proposed development surrounding the restoration area; this model was used as the existing model in the Floodplain Analysis for the mitigation project. In order to ensure continuity between the previously approved floodplain model and the modeling required for this project, the same 100-yr flows and Manning's n are intended to be utilized. The 100-yr discharges in the approved study are similar those RES calculated, and the Manning's n is the same as RES calculated based upon the D84 of the Pebble Count data.

For this project to not create impacts to the proposed and existing developments surrounding the site it is imperative that the work along Cabin Branch results in a no-rise condition on the project parcel or on adjacent parcels. To ensure that the proposed design is feasible a preliminary Floodplain Analysis was run along the proposed reaches of Cabin Branch and Tributary 4. This preliminary assessment showed no rises in the 100-Yr water surface elevation along Cabin Branch that cannot be addressed in further design development. Tributary 4 showed two increases however the rise is completely contained within the existing valley and thus does not create any offsite impacts. A comparison of existing and proposed 100-yr water surface elevations for both Cabin Branch and Tributary 4 are provided in Appendix D as well as the existing and proposed cross-sections.

Wetland Design

1.16. Wetland Restoration Feasibility Analysis

The entire project area is mapped as being underlain by Hatboro Silt Loam, 0-3% slope, frequently flooded. The Hatboro Silt Loam soil series has a hydric rating of 100, and under normal conditions will have groundwater within 6 inches of the soil surface well into the growing season. Groundwater is the primary hydrologic source governing the formation of wetlands in these soils, with the hydrology being supplemented by periodic overbank flooding from adjacent streams. In their natural condition, these soils and their associated hydrology supported a forested wetland community.

^{*}For the Floodplain Study/Analysis the 100-Yr flows from the previously approved study were used.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Development of a golf course on these soils required extensive manipulation of the landscape and the hydrology. Ponds were excavated and underground drainage systems were installed to provide the necessary drainage to develop the golf course. Although the ponds were excavated to depths that normally would intercept the groundwater, it is likely that they were lined with clay to ensure that water levels remained consistent for aesthetics purposes.

The conceptual design for wetland restoration involves draining five ponds and backfilling with suitable soils to appropriate elevations for wetland restoration, see Table 7 for Wetland Restoration Summary. To determine the appropriate elevations, groundwater monitoring wells were installed adjacent to each pond planned for restoration. Additionally, surface elevations in the ponds were measured twice during monitoring well download events to compare with the groundwater elevations. This will assist in the determination of whether the pond levels are artificially elevated due to pond liners being present. When the ponds are drained prior to backfilling with soils, a determination will be made as to whether a clay liner is present, and what the thickness of the liner is. If liners are present, the liners will be ripped to the depth necessary to restore groundwater influence prior to backfilling with soils translocated from onsite sources. The use of soils from onsite sources will ensure that the backfilled areas are comprised of soils of similar permeability and texture as would be found naturally. All backfilling will be to an elevation 6" below final grade, and Class A topsoil will be placed to a depth of 6" to bring wetland cell elevations to final grade. Upon approval of final grade elevations by the Engineer, organic compost will be spread evenly across the wetland planting zones at a rate of 60 CY per acre. The entire wetland planting area will be disked and/or ripped to incorporate the compost into the soil and create microtopography throughout the wetland cell.

Wetland Cell	Acreage	Wetland Type
Cell #1	1.19	PFO
Cell #2	0.29	PFO
Cell #3	0.40	PFO
Cell #4	1.51	PFO
Cell #5	1.25	PFO

Table 6: Wetland Mitigation Summary

1.17. Water Budget Development

Each wetland restoration location is a standalone site, independent of the other locations for site hydrology. This required that water budget models be developed for each wetland cell of the proposed site to simulate the balance of the hydrologic inputs and outputs and estimate the water table elevation for the proposed design. Each water budget was prepared using the Wetbud software, which is modeled on the methods described in *Planning Hydrology for Constructed Wetlands* by Gary Pierce (Pierce method). The model balances water sources (inputs), including precipitation and adjacent surface runoff, with water losses (outputs), including evapotranspiration, exfiltration, and weir overflow. Historic precipitation data was obtained from the Gaithersburg Montgomery County NOAA GSOD station, which is located approximately 1.3 miles east of the Site. Evapotranspiration rates were calculated via the Penman-Monteith method.

Water budgets were prepared using data from a dry year, a normal year, and a wet year. It was determined that 2007 was an historically dry year, 1988 was normal, and 2003 was wet. The water budgets demonstrate that each of the five (5) locations will have more than enough water to support establishment of wetlands in normal and wet years, and just enough to support establishment of wetlands in a dry year. The models, however, do not take into account

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

overbank flooding from Cabin Branch; nor do they take into account actual groundwater elevations. These sites will all experience overbank flooding and high groundwater; therefore, we believe the models likely underestimate the actual hydrology. To address the potential for too much water, the design incorporates low elevation inlet and outlet weirs to allow excess water to exit the site to prevent drowning of the young trees.

The Well Data is in Appendix E and the collected water budgets are included in Appendix F.

1.18. Integration with Stream Design

Stream designers coordinated directly with the wetland designers to ensure that the streambank grading would not impact the wetland grading; and to incorporate stream design elements that will allow restoration of periodic overbank flooding from the restored stream channels into the wetlands to help ensure successful wetland establishment.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Bibliography

2011 Maryland Standards and Specifications for Soil Erosion and Sediment Control. Baltimore, Maryland: Maryland Department of the Environment, December 2011. Print.

Cinotto, P. J., 2003, Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland: U.S. Geological Survey Water-Resources Investigations Report 2003–4014, 27 p., https://pubs.er.usgs.gov/publication/wri034014.

Lotspeich, R.R., 2009, Regional curves of bankfull channel geometry for non-urban streams in the Piedmont Physiographic Province, Virginia: U.S. Geological Survey Scientific Investigations Report 2009–5206, 51 p.

McCandless, T. L. and Everett, R. A. (2002), Maryland Stream Survey: Bankfull Discharge and Channel Characteristics Of Streams In The Piedmont Hydrologic Region: U.S. Fish & Wildlife Service Chesapeake Bay Field Office Report CBFO-S02-01, 52 p., https://www.fws.gov/chesapeakebay/PDF/stream-restoration/Section1.pdf

Pierce, Gary J. (1993), Planning Hydrology for Constructed Wetlands: Wetlands Training Institute, 49 p.

Stream Restoration Design: Part 654, Technical Supplement 14B-Scour Calculations, National Engineering Handbook. Washington, D.C.: U.S. Dept. of Agriculture, Natural Resources Conservation Service, 2007. Print.

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix A: Wetland Delineation Report Package

Wetland Delineation Report Site Information Summary MDSHA 495-270 PRM Cabin Branch Site

39.177500, -77.202865 (30.93 Acres)

Montgomery County, Maryland

Date: August 12, 2021

Applicant/Property Owner

Resource Environmental Solutions, LLC 5367 Telephone Road Warrenton, Virginia 20187 Email: Reid Cook - rcook@res.us

Consulting Agent

Resource Environmental Solutions, LLC 5367 Telephone Road Warrenton, Virginia 20187 Email: Reid Cook - rcook@res.us

Latitude/ Longitude in Decimal Degrees using coordinate plane (NAD 1983)

39.177500, -77.202865

Has a previous delineation or JD been performed?

A previous delineation was conducted in January of 2014 by Soltesz. Project number unknown.

Hydrologic Unit Code (HUC)

8 Digit: 02070008 11 Digit: 02070008030 14 Digit: 02070008030129

USGS Topographic Sheet

Gaithersburg Quadrangle, 7.5 Minute

Nearest Waterbody (example given)

Cabin Branch runs east to west throughout the project site, eventually converging with Great Seneca Creek approximately 0.60 miles to the west of the project limits. Additionally, North Creek Lake and Lake Whetstone are approximately 0.50 and 0.60 miles to the north and south of the project limits respectively.

Delineation Methods

U.S. Army Corps of Engineers 1987 Wetland Delineation Manual in conjunction with the April 2012 Eastern Mountains and Piedmont Regional Supplement, Version 2.0. The U.S. Army Corps of Engineers 2016 National Wetland Plant List was used.

On-Site Investigation Date

Wetland boundary delineation and site data collection was conducted on September 10, 2020.

Wetland Delineation Plan

The proposed wetland boundaries and Data Sampling Point locations are depicted on the plan entitled "Waters of the US Delineation Map" prepared by Resource Environmental Solutions, LLC on September 24, 2020.

Wetland Investigation Results

Wetlands: One palustrine emergent (PEM) wetland was observed within the project limits, for a total of 0.06 acres of the project site.

Stream Channels: Approximately 7,008 linear feet of stream channels were observed within the project limits, totaling 1.81 acres. All streams were observed to be R3/perennial in nature.

Other Waters: Numerous Palustrine Open Water (POW) bodies were identified throughout the project site. These POW features totaled approximately 4.61 acres of the project site.

Water bodies onsite identified as Section 10: No water bodies identified as Section 10 were identified onsite.

Uplands: Approximately 24.45 acres of the project site were determined to be upland in nature. These uplands are characterized by Data Sampling Points 3, 4, 5, and 7.

100-Year Floodplains

As depicted on the Federal Emergency Management Agency's (FEMA) on-line Flood Insurance Rate Map #24031C0187D, effective 9/269/2006. The FEMA floodplain map identifies Zone X, Area of Minimal Flood Hazard; and Zone AE, a Regulatory Floodway.

National Wetlands Inventory

The on-line National Wetland Inventory identifies freshwater ponds classified as PUBHx and freshwater riverine classified as R5UBH.

USDA Soil Survey

The National Resource Conservation Service (NRCS) soils report identifies numerous soil types throughout the project. The most common soil type within the project limits is 54 Hatboro Silt Loam. This soil type runs adjacent to the perennial Cabin Branch stream throughout the entire project limits. W Water Census soils were the next common soils type within the project limits, covering approximately 9.3% of the project area. All soils except for W Water Census are listed as hydric by the NRCS.

Notes: The project property was once used as a golf course, and as such has been previously developed.

Table 1: Soils Table

Map Unit	Map Unit Name	Acres in	Percent	Listing as a Hydric
Symbol	_	AOI	AOI	Soil
1C	Gaila Silt Loam, 8-	0.5	1.5%	Yes
	15% slopes			
5B	Glenville Silt Loam,	0.0	0.0%	Yes
	3-8% slopes			
6A	Baile Silt Loam, 0-3%	2.0	6.6%	Yes
	slopes			
16D	Brinklow-Blocktown	0.6	2.1%	Yes
	Channery Silt Loams,			
	15-25% slopes			
54A	Hatboro Silt Loam, 0-	22.7	73.5%	Yes
	3% slopes Frequently			
	Flooded			
66UB	Wheaton-Urban Lan	0.2	0.7%	Yes
	Complex, 0-8%			
	slopes			
66UC	Wheaton-Urban Lan	1.9	6.0%	Yes
	Complex, 8-15%			
	slopes			
W	Census Water	3.0	9.3%	No
Tota	ls for AOI	30.9	100%	

Table 2: Water of the U.S.

Wetland/Water	Latitude	Longitude	Acreage/ Length	Cowardin Class	Class of Aquatic
			(feet)		Resource
POW/1	39.17488	-77.194143	0.11	POW	Non-Tidal
POW/2	39.175332	-77.194577	0.85	POW	Non-Tidal
POW/3	39.176305	-77.194985	0.13	POW	Non-Tidal
POW/4	39.177946	-77.20052	0.37	POW	Non-Tidal
POW/5	39.17908	-77.205946	1.68	POW	Non-Tidal
POW/6	39.17976	-77.208462	1.46	POW	Non-Tidal
POW/7	39.1785	-77.20531	0.03	POW	Non-Tidal
PEM-1	39.176269	-77.194785	0.06	PEM	Non-Tidal
Streams					
R3-CBU	39.177268	-77.1973	2,982	R3	Non-Tidal
R3-T5	39.177924	-77.205483	459	R3	Non-Tidal
R3-T4	39.180125	-77.201821	1,021	R3	Non-Tidal
R3-T41	39.180616	-77.201403	70	R3	Non-Tidal
R3-T6	39.179224	-77.208909	53	R3	Non-Tidal
R3-CBL	39.179601	-77.205883	2,421	R3	Non-Tidal

Attachment A

Figures:

Project Location Map, Project Vicinity, National Wetland Inventory Map,
Aerial Imagery Map, Soils Map

PROJECT LOCATION MAP

CABIN BRANCH MONTGOMERY COUNTY, **MARYLAND**

USGS Topo Quads: Gaithersburg

Latitude: 39.1781

Longitude: -77.2018 Approx. Project Area: 30.93 acres

Elevation: 344 - 384 feet Scale: 1 inch = 2,000 feet Source: http://resources.arcgis.com/

USA Topo Maps

CABIN BRANCH
MONTGOMERY COUNTY,
MARYLAND

Street Map Source:
World Street Map
ESRI ArcGIS Online

N
inch = 2,000 feet

NATIONAL WETLANDS INVENTORY MAP

CABIN BRANCH MONTGOMERY COUNTY, MARYLAND Digital Ortho Photo Source:
World Imagery
ESRI ArcGIS Online
National Inventory Wetlands (NWI)
Source
http://www.fws.gov/

1 inch = 600 feet

WEST LOOP SOUTH, SUITE 300, BELLAIRE, TX 77401

AERIAL IMAGERY

CABIN BRANCH MONTGOMERY COUNTY, **MARYLAND**

Digital Orthophoto Source: World Imagery ESRI ArcGIS Online

1 inch = 600 feet

Attachment B Wetland Delineation Data Sheets

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

	WEILAND DEIL	MINITAL ION DA	TATOMI LUSTOTTINOU	intainis and i icamon			
Project/Site: MDSI	HA 495-270 PRM Cabin	Branch Site	City/County: Montgomery Co	ounty Sampling	Date: 10-Sep-2020		
Applicant/Owner: Reso	urce Environmental Solu	tions, LLC	State: Maryland	Sampling	Point:		
Investigator(s): Jacob	Fleckenstein, Daniel Bu	ıczek	Section, Township, I	Range: Montgomery Villa	ige		
Landform (hillslope, terra	ace, etc.): Flat		Local relief (concave, convex,	none): None	Slope (%): 0-3		
Subregion (LRR or MLR	A): 148 Northern Piedm	nont Lat: 39	9.179586 Long: -77.210)214 D	Datum: WGS83		
Soil Map Unit Name: 5	4A Hatboro Silt Loam, F	requently Flooded	NWI Classifi	cation: None			
Are climatic/hydrologic c			ne year?	(If no, explain in remarks	s)		
Are vegetation	, soil ,	or hydrology	significantly disturbed?	Are "normal circumstance			
Are vegetation	, soil ,	or hydrology	naturally problematic?	(If needed, explain any a			
		· · ·			·		
		map snowing s	sampling point locations	, transects, importai	nt reatures, etc.		
Hydrio poil propert	•		le the complete	······································	N. I		
Hydric soil present		N	IS the sampled a	rea within a wetland?	N		
Indicators of wetia	nd hydrology present?	N					
Remarks: (Explain alterr			•				
Data Point 7 exists in	n the western limits o	f the project, to the	he north of Data Point 6. T	The data point display	s upland features.		
HYDROLOGY							
Wetland Hydrology Inc	licators:						
Primary Indicators (mini	mum of one is required;		-	Secondary Indicators (m	ninimum of two required)		
Surface Water (A1)		True Aquatic F	` '	Surface Soil Crac	,		
High Water Table (/	42)	Hydrogen Sulf			ed Concave Surface (B8)		
Saturation (A3)			cospheres on Living Roots (C3)	Drainage Patterns	•		
Water Marks (B1)			Reduced Iron (C4)	Moss Trim Lines (
Sediment Deposits	(B2)		deduction in Tilled Soils (C6)	Dry-Season Wate			
Drift Deposits (B3)		Thin Muck Sui		Crayfish Burrows			
Algal Mat or Crust (B4)	Other (Explain	ı in Remarks)		on Aerial Imagery (C9)		
Iron Deposits (B5)	(5-)			Stunted or Stress	` ,		
	on Aerial Imagery (B7)			Geomorphic Posit			
Water-Stained Leav	, ,			Shallow Aquitard (D3) Microtopographic Relief (D4)			
Aquatic Fauna (B13)							
				FAC-Neutral Test			
Field Observations:	V	N. V. Dan	Ale (in ale a a)				
Surface water present?			oth (inches):	Watland Hudralan	Duna aut O		
Water table present? Saturation present?			oth (inches):	Wetland Hydrolog	y Present? N		
(includes capillary fringe		No X Dep	oth (inches):				
	<u>, </u>	ng well aerial photo	os, previous inspections), if ava	l ilable [.]			
Describe recorded data	(Stream gaage, mornton	ig well, derial prioto	is, previous inspections), if ava	mabic.			
Remarks:							
Wetland Hydrology v	vas not present at thi	s data point.					
, -5, p p							

VEGETATION (Five Str	rata) – Use scier	tific names of plants.		Dominan	la di a da a	Sampling Point: DP-7
			Absolute	t	Indicator	Dominance Test Worksheet:
Tree Stratum	(Plot size:	30 feet) % Cover	Species?	Staus	Number of Dominant Species
1 Acer rubrum			60 15	Y	FAC	that are OBL, FACW, or FAC:
2 Diospyros virginiana			10	Y	FAC	Total Number of Dominant Species Across all Strata: 3 (B)
3						
5						Percent of Dominant Species that are OBL, FACW, or FAC: 100.00% (A/B)
6						(145)
7						Prevalence Index Worksheet:
			75	=Total Cove	r	Total % Cover of:
Sapling stratum	(Plot size:	15 feet)	•		OBL species 0 x 1 = 0
1						FACW species 15 x 2 = 30
2						FAC species 145 x 3 = 435
3						FACU species 0 x 4 = 0
4						UPL species 0 x 5 = 0
5						Column totals 160 (A) 465 (B)
6						Prevalence Index = B/A = 2.91
7			0	=Total Cove	<u> </u>	Hydrophytic Vegetation Indicators:
Shrub stratum	(Plot size:	15 feet)	- Total Cove	;1	1 – Rapid Test for Hydrophytic Vegetation
1	(1 101 0120.	10 1001	,			X 2 – Dominance Test is >50%
2						X 3 – Prevalence Index is ≤3.0¹
3						
4						4 – Morphogical Adaptations¹ (provide supporting data in Remarks or on a
5						separate sheet)
6						
7						Problematic hydrophytic vegetation ¹ (explain)
			0	=Total Cove	er	¹Indicators of hydric soil and wetland hydrology must
Herb stratum	(Plot size:	5 feet)			be present, unless disturbed or problematic.
1 Microstegium vimine	•		70	Υ	FAC	Definitions of Five Vegetation Strata:
2 Boehmeria cylindrica			15	N	FACW	
3						Tree – Woody plants, excluding woody vines,
4						approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
5						(7.6 cm) of larger in diameter at breast height (DBH).
6						Sapling – Woody plants, excluding woody vines,
7						approximately 20 ft (6 m) or more in height and less
8						than 3 in. (7.6 cm) DBH.
9						Shrub – Woody plants, excluding woody vines,
10						approximately 3 to 20 ft (1 to 6 m) in height.
11						Herb – All herbaceous (non-woody) plants, including
12						herbaceous vines, regardless of size, and woody
			85	=Total Cove	r	plants, except woody vines, less than approximately
Woody vine stratum	(Plot size:	30 feet)	•		3 ft (1 m) in height.
1						Washing Allowation at the state of the state
2						Woody vine – All woody vines, regardless of height.
3						
4						Hydrophytic Vegetation Present? Y
5						
			0	=Total Cove	er	
Remarks: (Include photo n	umbers here or	on a separate sheet)				
Hydrophytic Vegetation	n was domina	nt at this data poir	nt.			

SOIL								Sampling Po	oint:	DP-7
Profile Des	cription: (Descr	ribe to the d	epth needed to doc	ument the	e indicator o	or confirm	n the absence o	of indicators.)		
Depth	Matrix	x	F	Redox Feat	tures					
(ln.)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remai	rks	
0-6	10YR 4/2	100%					Loam			
6-18	10YR 4/3	95%	10YR 4/2	2%	С	М	Loam	Faint		
			10YR 4/4	3%	С	M	Loam	Faint		
1T. max C = (Concentration D	- Danletian	DM = Dadward Mate	is MC = N	Applied Cons	Craina	21 continue D	N = Dara Linina	- M - Mat	mis.
		= Depletion,	RM = Reduced Matr	1X, IVIS = IV	lasked Sand	d Grains.		L = Pore Lining		
-	Indicators:		D 10				indicators	s for Problema	-	
	Histisol (A1)			urface (S7				2cm Muck (A		
	Histic Epipedon (A2)	_		Surface (S8)	-	-	Coast Prairie	•	16)
	Black Histic (A3)				e (S9) (MLR	A 147, 148	3)	(MLRA 14		
H	Hydrogen Sulfide	(A4)	Loamy	Gleyed Ma	atrix (F2)			Piedmont Floo	odplain So	oils (F19)
	Stratified Layers ((A5)	Deplete	ed Matrix (I	F3)			(MLRA 13	6, 147)	
2	2 cm Muck (A10)	(LRR N)	Redox	Dark Surfa	ice (F6)			Red Parent M		-
	Depleted Below D	Oark Surface	(A11) Deplete	ed Dark Su	ırface (F7)			Very Shallow	Dark Surfa	ace (TF12)
	Thick Dark Surfac	ce (A12)	Redox	Depressio	ns (F8)			Other (explain	ո in remark	<s)< td=""></s)<>
	Sandy Mucky Mir	neral (S1)	Iron-Ma	anganese I	Masses (F12	2)		_		
	(LRR N, MLR	A 147, 148)	(L	RR N, ML	.RA 136)		³ Indi	cators of hydrop	hytic vege	tation and
9	Sandy Gleyed Ma	atrix (S4)	Umbric	Surface (F	-13) (MLRA	136, 122)		and hydrology m		
	Sandy Redox (S5				ain Soils (F		.11 - 4	irbed or problem	atic.	
	Stripped Matrix (S	-		·	,	, ,	•			
	Layer (if observ									
	Layer (II Observ	eu).					Hv	dric Soil Prese	ent?	N
Type:	\-						119	unc son Frese	511L:	14
Depth (inche	es):									
Remarks:										
Hydric Soi	il indicators we	re not pres	sent.							

PHOTOGRAPHS Sampling Point: DP-7

Photograph 1. Soils photograph of the data point.

Photograph 2. Overview photograph of the data point.

Attachment C Waters of the U.S. Delineation Map

Attachment D

Palustrine Open Water (POW) Photographs

Photograph of POW Pond 1

POW—3

Photographs of POW Pond 3

POW—7

Photographs of POW Pond 7

Attachment E NRCS Soils Report

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Montgomery County, Maryland

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	8
Soil Map	
Legend	10
Map Unit Legend	
Map Unit Descriptions	11
Montgomery County, Maryland	13
1C—Gaila silt loam, 8 to 15 percent slopes	13
5B—Glenville silt loam, 3 to 8 percent slopes	14
6A—Baile silt loam, 0 to 3 percent slopes	15
16D—Brinklow-Blocktown channery silt loams, 15 to 25 percent slopes	16
54A—Hatboro silt loam, 0 to 3 percent slopes, frequently flooded	18
66UB—Wheaton-Urban land complex, 0 to 8 percent slopes	19
66UC—Wheaton-Urban land complex, 8 to 15 percent slopes	20
W—Census water	21
References	22

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout (o)

Borrow Pit \boxtimes

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Perennial Water

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

â

Spoil Area Stony Spot

Very Stony Spot

Wet Spot

Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Montgomery County, Maryland Survey Area Data: Version 16, Jun 12, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 3, 2015—Feb 22, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
1C	Gaila silt loam, 8 to 15 percent slopes	0.5	1.5%		
5B	Glenville silt loam, 3 to 8 percent slopes	0.0	0.0%		
6A	Baile silt loam, 0 to 3 percent slopes	2.0	6.6%		
16D	Brinklow-Blocktown channery silt loams, 15 to 25 percent slopes	0.6	2.1%		
54A	Hatboro silt loam, 0 to 3 percent slopes, frequently flooded	22.7	73.5%		
66UB	Wheaton-Urban land complex, 0 to 8 percent slopes	0.2	0.7%		
66UC	Wheaton-Urban land complex, 8 to 15 percent slopes	1.9	6.0%		
W	Census water	3.0	9.6%		
Totals for Area of Interest		30.9	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

Custom Soil Resource Report

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Montgomery County, Maryland

1C—Gaila silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: kx7n Elevation: 100 to 2,000 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 45 to 57 degrees F

Frost-free period: 120 to 255 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Gaila and similar soils: 95 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gaila

Typical profile

H1 - 0 to 8 inches: silt loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Baile

Percent of map unit: 5 percent

Landform: Flats Hydric soil rating: Yes

5B—Glenville silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tmch

Elevation: 20 to 1,090 feet

Mean annual precipitation: 40 to 55 inches Mean annual air temperature: 48 to 57 degrees F

Frost-free period: 150 to 192 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Glenville and similar soils: 75 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Glenville

Setting

Landform: Drainageways, swales

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Base slope, head slope, interfluve

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Parent material: Colluvium derived from metamorphic rock over schist, gneiss or

phyllite residuum

Typical profile

Ap - 0 to 11 inches: silt loam

Bt1 - 11 to 20 inches: channery silt loam

Bt2 - 20 to 30 inches: silt loam Btx - 30 to 40 inches: silt loam C1 - 40 to 59 inches: loam C2 - 59 to 82 inches: loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 29 to 31 inches to fragipan

Drainage class: Moderately well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.03 to

0.11 in/hr)

Depth to water table: About 18 to 22 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Hydric soil rating: No

Minor Components

Unnamed

Percent of map unit: 15 percent

Landform: Drainageways

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Hydric soil rating: No

Baile

Percent of map unit: 10 percent Landform: Swales, drainageways

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave, linear Across-slope shape: Linear, concave

Hydric soil rating: Yes

6A—Baile silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: kxb9 Elevation: 250 to 980 feet

Mean annual precipitation: 35 to 50 inches
Mean annual air temperature: 48 to 57 degrees F

Frost-free period: 120 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Baile and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Baile

Setting

Landform: Swales, hillslopes, depressions, drainageways Landform position (three-dimensional): Head slope, base slope

Down-slope shape: Concave

Across-slope shape: Linear, concave

Typical profile

A - 0 to 9 inches: silt loam

Btg - 9 to 32 inches: silty clay loam

Cg - 32 to 65 inches: loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr) Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: Frequent

Available water capacity: High (about 10.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Glenville

Percent of map unit: 15 percent Landform: Drainageways, swales

Landform position (three-dimensional): Base slope, head slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

16D—Brinklow-Blocktown channery silt loams, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: kx79 Elevation: 300 to 2,000 feet

Mean annual precipitation: 7 to 55 inches Mean annual air temperature: 45 to 61 degrees F

Frost-free period: 110 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Brinklow and similar soils: 50 percent Blocktown and similar soils: 30 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brinklow

Setting

Landform: Knolls

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Gravelly residuum weathered from low base phyllites and schists.

Typical profile

Ap - 0 to 10 inches: channery silt loam Bt,BC - 10 to 25 inches: channery loam

Cr - 25 to 35 inches: bedrock R - 35 to 39 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C Hydric soil rating: No

Description of Blocktown

Setting

Landform: Knolls

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Gravelly residuum weathered from low base phyllites and schists.

Typical profile

Ap - 0 to 6 inches: channery silt loam

Bt - 6 to 17 inches: extremely channery silt loam

Cr - 17 to 21 inches: bedrock R - 21 to 25 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 10 to 20 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Glenelg

Percent of map unit: 10 percent

Hydric soil rating: No

Occoquan

Percent of map unit: 5 percent

Hydric soil rating: No

Baile

Percent of map unit: 5 percent

Landform: Flats Hydric soil rating: Yes

54A—Hatboro silt loam, 0 to 3 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: kx9f Elevation: 200 to 600 feet

Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 52 to 57 degrees F

Frost-free period: 180 to 210 days

Farmland classification: Not prime farmland

Map Unit Composition

Hatboro and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hatboro

Setting

Landform: Channels on flood plains

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Mica bearing loamy alluvium

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 8 inches: silt loam Bg - 8 to 18 inches: silt loam Cg - 18 to 66 inches: loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 0 to 10 inches

Frequency of flooding: Frequent Frequency of ponding: Frequent

Available water capacity: Very high (about 12.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

66UB—Wheaton-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: kxb6 Elevation: 200 to 2,000 feet

Mean annual precipitation: 7 to 50 inches

Mean annual air temperature: 45 to 57 degrees F

Frost-free period: 120 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Wheaton and similar soils: 50 percent

Urban land: 30 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wheaton

Typical profile

H1 - 0 to 6 inches: silt loam

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Baile

Percent of map unit: 5 percent Landform: Flats Hydric soil rating: Yes

Glenville

Percent of map unit: 5 percent Hydric soil rating: No

Blocktown

Percent of map unit: 5 percent Hydric soil rating: No

Brinklow

Percent of map unit: 5 percent Hydric soil rating: No

66UC—Wheaton-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: kxb7 Elevation: 200 to 2.000 feet

Mean annual precipitation: 7 to 50 inches

Mean annual air temperature: 45 to 57 degrees F

Frost-free period: 120 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Wheaton and similar soils: 50 percent

Urban land: 30 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wheaton

Setting

Landform: Ridges, hills, interfluves, knolls Down-slope shape: Linear, convex Across-slope shape: Convex, linear

Parent material: Human transported material derived from gneiss

Typical profile

H1 - 0 to 6 inches: silt loam H2 - 6 to 68 inches: channery loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Brinklow

Percent of map unit: 5 percent Hydric soil rating: No

Blocktown

Percent of map unit: 5 percent Hydric soil rating: No

Glenville

Percent of map unit: 5 percent Hydric soil rating: No

Baile

Percent of map unit: 5 percent Landform: Flats Hydric soil rating: Yes

W—Census water

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix B: BANCS Summary

NUTRIENT REDUCTION SUMMARY

Site Name: RFP-2 Cabin Branch

50% Efficiency			
	TSS	Р	N
(Left and Right Banks)	ton/year	lbs/year	lbs/year
Cabin Branch Upper	109.50	114.98	249.66
Cabin Branch Lower	164.00	172.20	373.92
Tributary 4	78.20	82.10	178.28
Sum	351.70	369.28	801.86

Urban Stream Restoration Load Reduction

Based on September 2014 Expert Panel Report and DEQ Chesapeake Bay TMDL Special Condition Guidance March 2015

Step 1: Estimate Stream Erosion Rates

	Cabin Bra	nch Upper	Cabin Bra	nch Lower	Tributary 4		
	Left Bank	Right Bank	Left Bank	Right Bank	Left Bank	Right Bank	
Total Annual Load (TSS ton/year)	107.53	111.47	157.80	170.20	65.36	91.03	

Step 2: Convert Stream Bank Erosion Rates to Nutrient Loads

Default concentrations of P and N may be used. Use site specific or NRCS data for Bulk Density.

Soil Data	Bulk Density	P	N	
SOII Data	lbs/cf	lbs/ton	lbs/ton	
Rates (Cabin Branch)	84.3	1.05	2.28	
Rates (Trib 4)	89.3	1.05	2.28	

	Cabin Bra	nch Upper	Cabin Bra	nch Lower	Tributary 4		
	Left Bank	Right Bank	Left Bank	Right Bank	Left Bank	Right Bank	
P lbs/year	112.91	117.04	165.69	178.71	68.63	95.58	
N lbs/year	245.17	254.15	359.78	388.06	149.02	207.55	

Step 3: Estimate Stream Restoration Efficiency

The efficiency of the stream restoration at reducing loads from bank erosion are applied to the estimate annual load to determine the actual load reduction or "prevented sediment".

Default Rate 50% Efficiency per Expert Panel Report

Cabin Branch Upper	(Left and F	Right Bank)			
Total Load Reduction for	Restoration	TSS	P	N	
Proiect	Efficiencies	ton/year	lbs/year	lbs/year	
Project	50%	109.50	114.98	249.66	

Tributary 4	(Left and F	Right Bank)		
Total Load Reduction for	Restoration TSS		P	N
Project	Efficiencies	ton/year	lbs/year	lbs/year
Project	50%	78.20	82.10	178.28

Cabin Branch	Lower	(Left and Right	Bank)	
Total Load	Restoration	TSS	P	N
Reduction	Efficiencies	ton/year	lbs/year	lbs/year
for Project	50%	164.00	172.20	373.92

Worksheet 3-13. Summary form of annual streambank erosion estimates for various study reaches.

Stre RFP-2 Cabin	n Branch			Location:	Cabin Branc	h Upper					
Graph					n Length (ft):	· P		Date:			
Ob:			Valley Type:			Stream Type:					
(1) Station (ft)	(2) BEHI rating	(3) NBS rating	(4) Bank erosion rate (Hickey Curves) (ft/yr)	(5) Length of bank (ft)	(6) Study bank height (ft)	(7) Erosion subtotal [(4)×(5)×(6)] (ft³/yr)	(8) Erosion subtotal (tons/yr)	(9) Phophorous Concentration(lb per ton of sediment)	(10) Phosphorous Loading (lbs/yr)	(11) Nitrogen Concentration(lb per ton of sediment)	(12) Nitrogen Loading (lbs/yr)
1341L	Moderate	Low	0.13	321.94	4.60	185.11	7.80	1.05	8.19	2.28	17.79
1342L	Very Low	Low	0.00	284.64	5.40	0.00	0.00	1.05	0.00	2.28	0.00
1345L	Moderate	Low	0.13	260.01	6.10	198.26	8.36	1.05	8.77	2.28	19.05
1347L	Very Low	Low	0.00	217.56	6.50	0.00	0.00	1.05	0.00	2.28	0.00
1351L	Moderate	Low	0.13	58.04	3.80	27.57	1.16	1.05	1.22	2.28	2.65
1353L	Moderate	Low	0.13	121.31	5.20	78.85	3.32	1.05	3.49	2.28	7.58
1355L	High	Moderate	0.64	28.31	5.00	90.59	3.82	1.05	4.01	2.28	8.71
1356L	Very Low	Low	0.00	68.88	3.50	0.00	0.00	1.05	0.00	2.28	0.00
1357L	High	Low	0.40	183.02	4.00	292.84	12.34	1.05	12.96	2.28	28.14
1359L	High	Moderate	0.64	89.31	5.30	302.94	12.77	1.05	13.41	2.28	29.11
1361L	Moderate	Low	0.13	84.36	4.50	47.45	2.00	1.05	2.10	2.28	4.56
1362L	Very High	Moderate	0.64	93.38	5.10	304.79	12.85	1.05	13.49	2.28	29.29
1365L	Moderate	Low	0.13	71.91	3.20	28.77	1.21	1.05	1.27	2.28	2.76
1367L	High	Moderate	0.64	70.43	6.20	279.45	11.78	1.05	12.37	2.28	26.86
1368L	Moderate	Low	0.13	98.20	3.50	42.96	1.81	1.05	1.90	2.28	4.13
1370L	High	Moderate	0.64	71.48	6.20	283.64	11.96	1.05	12.55	2.28	27.26
1372L	Moderate	Low	0.13	268.94	4.00	134.47	5.67	1.05	5.95	2.28	12.92
1376L	Very Low	Low	0.00	130.21	4.20	0.00	0.00	1.05	0.00	2.28	0.00
1377L	Moderate	Low	0.13	170.45	4.00	85.22	3.59	1.05	3.77	2.28	8.19
1380L	High	Low	0.40	210.20	2.00	168.16	7.09	1.05	7.44	2.28	16.16
LEFT E	BANK TOTALS			2902.57			107.53		112.90		245.16
1340R	Moderate	Low	0.13	344.04	5.50	236.53	9.97	1.05	10.47	2.28	22.73
1343R	Very Low	Low	0.00	130.52	5.70	0.00	0.00	1.05	0.00	2.28	0.00
1344R	Moderate	Low	0.13	349.22	6.10	266.28	11.22	1.05	11.79	2.28	25.59
1348R	High	Moderate	0.64	37.62	4.50	108.34	4.57	1.05	4.79	2.28	10.41
1350R	Moderate	Low	0.13	154.88	4.50	87.12	3.67	1.05	3.86	2.28	8.37
1352R	Moderate	Low	0.13	75.88	2.10	19.92	0.84	1.05	0.88	2.28	1.91
1354R	High	Moderate	0.64	105.14	4.70	316.26	13.33	1.05	14.00	2.28	30.39
1356R	Very Low	Low	0.00	68.88	3.50	0.00	0.00	1.05	0.00	2.28	0.00
1358R	Moderate	Low	0.13	250.58	3.50	109.63	4.62	1.05	4.85	2.28	10.54
1360R	Moderate	Moderate	0.30	53.21	5.30	84.61	3.57	1.05	3.74	2.28	8.13
1363R	Moderate	Low	0.13	118.42	2.50	37.01	1.56	1.05	1.64	2.28	3.56
1364R	High	Moderate	0.64	67.73	4.20	182.06	7.67	1.05	8.06	2.28	17.50
1366R	Moderate	Low	0.13	125.53	2.30	36.09	1.52	1.05	1.60	2.28	3.47
1369R	High	Moderate	0.64	40.92	5.20	136.20	5.74	1.05	6.03	2.28	13.09
1371R	Moderate	Low	0.13	131.70	2.90	47.74	2.01	1.05	2.11	2.28	4.59
1373R	High	Moderate	0.64	133.53	4.10	350.39	14.77	1.05	15.51	2.28	33.67
1375R	Moderate	Low	0.13	133.72	4.50	75.22	3.17	1.05	3.33	2.28	7.23
1376R	Very Low	Low	0.00	130.21	4.20	0.00	0.00	1.05	0.00	2.28	0.00
1378R	High	Low	0.40	167.67	4.50	301.80	12.72	1.05	13.36	2.28	29.00
1379R	High	Moderate	0.64	92.80	4.20	249.46	10.51	1.05	11.04	2.28	23.97
RIGHT	BANK TOTALS			2712.20			111.47		117.05		254.16

Worksheet 3-13. Summary form of annual streambank erosion estimates for various study reaches.

Stre RFP-2 Cabin B	Branch			Location:	Cabin Branc	ch Lower					
Graph				Total Stream	m Length (ft):			Date:			
Ob:			Valley Type:			Stream Type:					
(1) Station (ft)	(2) BEHI rating	(3) NBS rating	(4) Bank erosion rate (Hickey Curves) (ft/yr)	(5) Length of bank (ft)	(6) Study bank height (ft)	(7) Erosion subtotal [(4)×(5)×(6)] (ft³/yr)	(8) Erosion subtotal (tons/yr)	(9) Phophorous Concentration(lb per ton of sediment)	(10) Phosphorous Loading (lbs/yr)	(11) Nitrogen Concentration(lb per ton of sediment)	(12) Nitrogen Loading (lbs/yr)
1382L	Low	Low	0.02	268.69	2.00	10.75	0.45	1.05	0.48	2.28	1.03
1383L	High	Low	0.40	143.29	5.50	315.25	13.29	1.05	13.95	2.28	30.30
1404L	High	Moderate	0.64	141.28	4.20	379.76	16.01	1.05	16.81	2.28	36.50
1409L	Moderate	Low	0.13	306.26	6.20	237.35	10.00	1.05	10.50	2.28	22.81
1412L	High	Moderate	0.64	154.18	6.40	631.54	26.62	1.05	27.95	2.28	60.69
1415L	Moderate	Low	0.13	165.15	4.40	90.83	3.83	1.05	4.02	2.28	8.73
1417L	High	Moderate	0.64	258.95	4.20	696.06	29.34	1.05	30.81	2.28	66.89
1419L	Moderate	Low	0.13	336.63	3.00	126.24	5.32	1.05	5.59	2.28	12.13
1421L	High	Moderate	0.64	35.82	3.30	75.66	3.19	1.05	3.35	2.28	7.27
1422L	Moderate	Moderate	0.30	150.90	2.80	126.76	5.34	1.05	5.61	2.28	12.18
1424L	Moderate	Low	0.13	41.73	3.30	17.21	0.73	1.05	0.76	2.28	1.65
1425L	Very High	Moderate	0.64	90.99	5.00	291.16	12.27	1.05	12.89	2.28	27.98
1427L	Moderate	Low	0.13	36.86	2.40	11.06	0.47	1.05	0.49	2.28	1.06
1429L	High	Moderate	0.64	215.37	4.40	606.48	25.56	1.05	26.84	2.28	58.28
1432L	Moderate	Low	0.13	56.77	3.50	24.84	1.05	1.05	1.10	2.28	2.39
1435L	High	Moderate	0.64	32.17	5.00	102.95	4.34	1.05	4.56	2.28	9.89
1436L	Very Low	Low	0.00	79.90	0.00	0.00	0.00	1.05	0.00	2.28	0.00
LEFT BAI	NK TOTALS			2514.96			157.80		165.69		359.79
1381R	High	Low	0.40	134.93	4.50	242.88	10.24	1.05	10.75	2.28	23.34
1403R	High	Moderate	0.64	78.97	5.00	252.70	10.65	1.05	11.18	2.28	24.28
1405R	High	Moderate	0.64	77.37	4.80	237.69	10.02	1.05	10.52	2.28	22.84
1407R	High	Moderate	0.64	421.05	4.00	1077.88	45.43	1.05	47.70	2.28	103.59
1410R	Very Low	Low	0.00	208.73	4.50	0.00	0.00	1.05	0.00	2.28	0.00
1411R	Moderate	Low	0.13	61.99	5.00	38.75	1.63	1.05	1.71	2.28	3.72
1413R	Very Low	Low	0.00	56.24	5.70	0.00	0.00	1.05	0.00	2.28	0.00
1414R	Moderate	Low	0.13	85.32	6.10	65.06	2.74	1.05	2.88	2.28	6.25
1416R	Moderate	Low	0.13	177.85	5.00	111.16	4.69	1.05	4.92	2.28	10.68
1418R	High Moderate	Moderate Low	0.64	167.64	4.00 3.80	429.16	18.09	1.05	18.99	2.28	41.24
1420R 1423R	High	Moderate	0.13	342.45 196.97	4.10	162.66 516.85	6.86	1.05	7.20	2.28	15.63 49.67
1423R 1426R	High	Moderate	0.64	47.75	3.00	91.68	3.86	1.05	4.06	2.28	8.81
1426R	Very High	Moderate	0.64	47.75	5.20	159.55	6.72	1.05	7.06	2.28	15.33
1428R 1430R	Moderate	Low	0.13	31.51	3.90	15.36	0.65	1.05	0.68	2.28	1.48
1430R	High	Moderate	0.13	179.54	4.10	471.11	19.86	1.05	20.85	2.28	45.27
1431R 1433R	Moderate	Low	0.13	41.37	4.00	20.69	0.87	1.05	0.92	2.28	1.99
1433R	High	Moderate	0.64	52.60	4.30	144.76	6.10	1.05	6.41	2.28	13.91
1434R	Very Low	Low	0.00	79.90	0.00	0.00	0.00	1.05	0.00	2.28	0.00
		2511	5.00	2490.13	5.00	5.00	170.20	00	178.71	2.20	388.05
	NK TOTALS										

Copyright © 2008 Wildland Hydrology

Worksheet 3-13. Summary form of annual streambank erosion estimates for various study reaches.

Stre RFP-2 Cabin	Branch			Location:	Tributary 4						
Graph				Total Stream	m Length (ft):			Date:			
Ob:			Valley Type:			Stream Type:		_			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Station (ft)	BEHI rating	NBS rating	Bank erosion rate (Hickey Curves) (ft/yr)	Length of bank (ft)	Study bank height (ft)	Erosion subtotal [(4)×(5)×(6)] (ft³/yr)	Erosion subtotal (tons/yr)	Phophorous Concentration(lb per ton of sediment)	Phosphorous Loading (lbs/yr)	Nitrogen Concentration(lb per ton of sediment)	Nitrogen Loading (lbs/yr)
1385L	High	Moderate	0.64	144.56	5.20	481.09	21.48	1.05	22.55	2.28	48.98
1386L	Moderate	Low	0.13	100.02	1.70	21.25	0.95	1.05	1.00	2.28	2.16
1387L	High	Moderate	0.64	50.52	3.70	119.62	5.34	1.05	5.61	2.28	12.18
1389L	Moderate	Low	0.13	13.48	1.40	2.36	0.11	1.05	0.11	2.28	0.24
1391L	Very High	Moderate	0.64	52.90	4.30	145.58	6.50	1.05	6.83	2.28	14.82
1393L	High	Moderate	0.64	38.97	5.00	124.70	5.57	1.05	5.85	2.28	12.69
1394L	High	Low	0.40	54.75	2.50	54.75	2.44	1.05	2.57	2.28	5.57
1396L	High	Moderate	0.64	93.63	4.70	281.63	12.57	1.05	13.20	2.28	28.67
1401L	High	Moderate	0.64	165.38	2.20	232.86	10.40	1.05	10.92	2.28	23.71
LEFT BA	NK TOTALS			714.20			65.36		68.63		149.02
1385R	High	Moderate	0.64	144.56	5.20	481.09	21.48	1.05	22.55	2.28	48.98
1388R	High	Low	0.40	33.32	1.60	21.33	0.95	1.05	1.00	2.28	2.17
1390R	Very High	Moderate	0.64	37.21	6.10	145.25	6.49	1.05	6.81	2.28	14.79
1392R	High	Low	0.40	41.79	2.20	36.78	1.64	1.05	1.72	2.28	3.74
1393R	High	Moderate	0.64	38.97	5.00	124.70	5.57	1.05	5.85	2.28	12.69
1395R	Very High	Moderate	0.64	72.22	5.10	235.73	10.53	1.05	11.05	2.28	24.00
1397R	High	Low	0.40	171.13	2.00	136.90	6.11	1.05	6.42	2.28	13.94
1398R	High	Moderate	0.64	371.53	2.80	665.79	29.73	1.05	31.21	2.28	67.78
1400R	High	Low	0.40	271.13	1.60	173.52	7.75	1.05	8.14	2.28	17.66
1402R	High	Moderate	0.64	13.10	2.10	17.61	0.79	1.05	0.83	2.28	1.79
RIGHT BA	ANK TOTALS			1194.96			91.03		95.58		207.54

Copyright © 2008 Wildland Hydrology

Cabin Branch Stream and Wetland Restoration Design Report

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix C: NOAA Atlas 14 Documentation, TR-55 and Outputs TR-20 Outputs

(F)

NOAA Atlas 14, Volume 2, Version 3 Location name: Montgomery Village, Maryland, USA*

Latitude: 39.1773°, Longitude: -77.1994° Elevation: 366.33 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	S-based _I	point prec	ipitation f				confiden	ce interva	ıls (in inch	nes) ¹
Duration					ge recurren	ce interval (
	1	2	5	10	25	50	100	200	500	1000
5-min	0.341 (0.309-0.377)	0.408 (0.370-0.451)	0.486 (0.439-0.537)	0.543 (0.490-0.599)	0.616 (0.551-0.679)	0.670 (0.597-0.739)	0.724 (0.641-0.799)	0.775 (0.682-0.859)	0.842 (0.734-0.937)	0.895 (0.774-0.999)
10-min	0.545 (0.494-0.602)	0.653 (0.591-0.721)	0.779 (0.704-0.859)	0.869 (0.784-0.958)	0.981 (0.878-1.08)	1.07 (0.950-1.18)	1.15 (1.02-1.27)	1.23 (1.08-1.36)	1.33 (1.16-1.48)	1.41 (1.22-1.57)
15-min	0.682 (0.617-0.753)	0.821 (0.743-0.906)	0.985 (0.890-1.09)	1.10 (0.991-1.21)	1.24 (1.11-1.37)	1.35 (1.20-1.49)	1.45 (1.29-1.61)	1.55 (1.37-1.72)	1.68 (1.46-1.87)	1.77 (1.53-1.97)
30-min	0.934 (0.846-1.03)	1.13 (1.03-1.25)	1.40 (1.26-1.54)	1.59 (1.44-1.76)	1.84 (1.65-2.03)	2.03 (1.81-2.24)	2.23 (1.97-2.46)	2.41 (2.13-2.67)	2.67 (2.33-2.97)	2.86 (2.48-3.20)
60-min	1.17 (1.06-1.29)	1.42 (1.29-1.57)	1.79 (1.62-1.98)	2.07 (1.87-2.29)	2.45 (2.20-2.70)	2.76 (2.46-3.04)	3.07 (2.72-3.39)	3.39 (2.98-3.75)	3.83 (3.34-4.26)	4.18 (3.62-4.67)
2-hr	1.37 (1.24-1.52)	1.67 (1.52-1.85)	2.12 (1.92-2.34)	2.48 (2.23-2.73)	2.98 (2.67-3.28)	3.39 (3.02-3.74)	3.84 (3.39-4.23)	4.30 (3.77-4.75)	4.98 (4.31-5.52)	5.53 (4.74-6.17)
3-hr	1.48 (1.34-1.64)	1.80 (1.62-1.99)	2.28 (2.06-2.53)	2.66 (2.39-2.95)	3.22 (2.87-3.56)	3.68 (3.26-4.07)	4.17 (3.67-4.62)	4.70 (4.10-5.22)	5.47 (4.70-6.09)	6.11 (5.19-6.83)
6-hr	1.83 (1.66-2.04)	2.21 (2.00-2.46)	2.79 (2.52-3.10)	3.27 (2.94-3.63)	3.99 (3.55-4.42)	4.60 (4.06-5.09)	5.26 (4.61-5.83)	5.98 (5.19-6.65)	7.06 (6.02-7.89)	7.97 (6.71-8.94)
12-hr	2.23 (2.01-2.51)	2.69 (2.42-3.02)	3.41 (3.06-3.83)	4.03 (3.59-4.52)	4.97 (4.39-5.57)	5.80 (5.07-6.49)	6.73 (5.81-7.54)	7.77 (6.62-8.72)	9.35 (7.81-10.5)	10.7 (8.81-12.1)
24-hr	2.57 (2.35-2.86)	3.11 (2.84-3.45)	3.99 (3.64-4.43)	4.77 (4.33-5.28)	5.97 (5.38-6.57)	7.04 (6.28-7.71)	8.24 (7.28-9.00)	9.61 (8.39-10.5)	11.7 (10.1-12.7)	13.6 (11.5-14.7)
2-day	2.99 (2.72-3.31)	3.61 (3.29-4.01)	4.63 (4.21-5.14)	5.50 (4.99-6.10)	6.81 (6.14-7.53)	7.96 (7.12-8.78)	9.23 (8.19-10.2)	10.7 (9.36-11.7)	12.8 (11.1-14.1)	14.6 (12.5-16.1)
3-day	3.16 (2.88-3.50)	3.82 (3.49-4.24)	4.89 (4.45-5.42)	5.81 (5.27-6.43)	7.19 (6.48-7.93)	8.39 (7.51-9.24)	9.72 (8.63-10.7)	11.2 (9.86-12.3)	13.5 (11.7-14.8)	15.4 (13.2-16.9)
4-day	3.33 (3.05-3.70)	4.03 (3.68-4.47)	5.15 (4.70-5.71)	6.11 (5.56-6.76)	7.56 (6.82-8.33)	8.82 (7.90-9.71)	10.2 (9.07-11.2)	11.8 (10.4-12.9)	14.1 (12.2-15.5)	16.1 (13.8-17.8)
7-day	3.87 (3.55-4.25)	4.66 (4.28-5.11)	5.88 (5.41-6.46)	6.93 (6.35-7.60)	8.51 (7.74-9.29)	9.87 (8.92-10.8)	11.4 (10.2-12.4)	13.0 (11.6-14.2)	15.5 (13.6-16.9)	17.6 (15.3-19.3)
10-day	4.42 (4.07-4.84)	5.31 (4.89-5.82)	6.63 (6.09-7.25)	7.73 (7.09-8.45)	9.34 (8.52-10.2)	10.7 (9.70-11.7)	12.1 (10.9-13.2)	13.7 (12.3-15.0)	16.0 (14.1-17.5)	18.0 (15.7-19.6)
20-day	5.98 (5.55-6.47)	7.12 (6.61-7.69)	8.60 (7.97-9.29)	9.81 (9.08-10.6)	11.5 (10.6-12.4)	12.8 (11.8-13.8)	14.2 (13.0-15.3)	15.7 (14.3-16.9)	17.7 (16.0-19.1)	19.4 (17.4-20.9)
30-day	7.37 (6.89-7.90)	8.71 (8.15-9.35)	10.4 (9.68-11.1)	11.7 (10.9-12.5)	13.5 (12.6-14.5)	15.0 (13.9-16.0)	16.5 (15.2-17.6)	18.0 (16.5-19.3)	20.1 (18.3-21.5)	21.7 (19.7-23.3)
45-day	9.25 (8.69-9.86)	10.9 (10.3-11.6)	12.7 (12.0-13.6)	14.2 (13.3-15.1)	16.0 (15.0-17.1)	17.4 (16.3-18.6)	18.8 (17.6-20.1)	20.2 (18.8-21.5)	22.0 (20.4-23.5)	23.3 (21.5-24.9)
60-day	11.0 (10.4-11.7)	13.0 (12.2-13.7)	15.0 (14.1-15.9)	16.5 (15.5-17.5)	18.5 (17.4-19.6)	19.9 (18.7-21.1)	21.3 (20.0-22.6)	22.7 (21.2-24.1)	24.4 (22.7-25.9)	25.6 (23.7-27.2)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 39.1773°, Longitude: -77.1994°

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Fri Oct 30 15:16:03 2020

Back to Top

Maps & aerials

Back to Top

Cabin Branch MD SHA Cabin Branch SUBS 1-9 Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie		Hydrologic Soil Group	Area (ac)	Number
SUB DA1	Paved; curbs and storm sewers Industrial Industrial Industrial Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/4 acre) Residential districts (1/4 acre) Residential districts (1/4 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1 acre) Residential districts (1 acre) Residential districts (1 acre)	B C D B C D B C D B	216 335 1 66 178 7 20 446 14 65 709 43 117 24 11	98 88 91 93 85 90 92 75 83 87 70 80 85 68
	Total Area / Weighted Curve Number		2252 ====	8 0 ==
SUB DA2	Paved; curbs and storm sewers Commercial & business Industrial Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/2 acre)	B B B D B	6 5 69 2 9	98 92 88 85 92 70
	Total Area / Weighted Curve Number		97 ==	85 ==
SUB DA3	Paved; curbs and storm sewers Paved; curbs and storm sewers Paved; curbs and storm sewers Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/2 acre) Residential districts (1/2 acre)	B C D B C D B	3 1 1 54 10 11 9	98 98 98 85 90 92 70 85
	Total Area / Weighted Curve Number		90 ==	86 ==
SUB DA4B	Paved; curbs and storm sewers Paved; curbs and storm sewers Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre)	B D B C D	1.2 .49 44.85 2 11.46	98 98 85 90 92
	Total Area / Weighted Curve Number		60 ==	87 ==
SUB DA5	Paved; curbs and storm sewers Commercial & business Commercial & business Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/4 acre) Residential districts (1/2 acre) Residential districts (1/2 acre)	B B D B D B	9 3 4 33 1 25 8 2	98 92 95 85 92 75 70 85

Cabin Branch MD SHA Cabin Branch SUBS 1-9 Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details (continued)

Sub-Area Identifie		Hydrologic Soil Group	Sub-Area Area (ac)	
	Total Area / Weighted Curve Number		85 ==	83 ==
SUB DA6A	Paved; curbs and storm sewers Paved; curbs and storm sewers Paved; curbs and storm sewers Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/2 acre)	B C D C D B	1.43 .85 .36 23.47 .86 2.91	98 98 98 85 90 92
	Total Area / Weighted Curve Number		30 ==	87 ==
SUB DA7	Commercial & business Commercial & business Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1/2 acre)	В D В C D В С	3 5 2 2 2 2 1 1 3	92 95 85 90 92 70 80
	Total Area / Weighted Curve Number		19 ==	89 ==
SUB DA8	Paved; curbs and storm sewers Paved; curbs and storm sewers Commercial & business Commercial & business Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1/2 acre) Residential districts (1 acre)	B D B D B D D	2 12 7 16 2 5 2	98 92 95 85 92 70 85 84
	Total Area / Weighted Curve Number		49 ==	88 ==
SUB DA9	Paved; curbs and storm sewers Paved; curbs and storm sewers Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/8 acre) Residential districts (1/4 acre) Residential districts (1/4 acre) Residential districts (1/4 acre) Residential districts (1/4 acre) Residential districts (1/2 acre) Residential districts (1/2 acre)	B D B C D B B B	4 16 4 16 27 23 1 2	98 98 85 90 92 75 83 87 70
	Total Area / Weighted Curve Number		99 ==	8 4 ==
SUB DA4A	Paved; curbs and storm sewers Paved; curbs and storm sewers Residential districts (1/8 acre) Residential districts (1/8 acre)	B D B D	.8 .51 7.15 .54	98 98 85 92

KJA

Cabin Branch MD SHA Cabin Branch SUBS 1-9 Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details (continued)

Sub-Area Identifier	Land Use	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Total Are	a / Weighted Curve Number		9 =	87 ==

Cabin Branch MD SHA Cabin Branch SUBS 6B Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
SUB DA6B	Paved; curbs and storm sewers	В	4.74	98
	Paved; curbs and storm sewers	С	.32	98
	Paved; curbs and storm sewers	D	.85	98
	Commercial & business	В	.28	92
	Commercial & business	С	.16	94
	Commercial & business	D	2.32	95
	Residential districts (1/8 acre)	В	.13	85
	Residential districts (1 acre)	В	. 2	68
	Total Area / Weighted Curve Number		9	96
			=	==

Cabin Branch MD SHA Cabin Branch SUBS 1-9 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Length (ft)	Slope (ft/ft)		Area (sq ft)	Wetted Perimeter (ft)	(ft/sec)	(hr)	
SUB DA1 SHEET SHALLOW	100					3.500	0.312 0.044 1.463	B1-C1
				Т	ime of Concen	tration	1.819	
SUB DA2 SHEET SHALLOW SHALLOW CHANNEL	1141	0.0260	0.240 0.050 0.025			3.500	0.287 0.122 0.071 0.175	B2-C2 C2-D2
				Т	ime of Concen	tration	.655	
SUB DA3 SHEET SHALLOW SHALLOW CHANNEL CHANNEL	337	0.0100 0.0180 0.0230	0.240 0.025 0.050			8.000 3.500		B3-C3 B3-C3
				Т	ime of Concen	tration	0.746	
SUB DA4B SHEET SHALLOW CHANNEL CHANNEL	100 420 1331 580	0.0210 0.0250	0.240 0.050			3.500 8.000	0.046 0.106	A4B-B4B B4B-C4B C4B-D4B,E4B-F4B D4B-E4B
				Т	ime of Concen	tration	.409	
SUB DA5 SHEET SHALLOW SHALLOW CHANNEL CHANNEL		0.0890	0.240 0.050 0.025			8.000 3.500		B5-C5 B5-C5 C5-D5
				Т	ime of Concen		.362	
SUB DA6A SHEET SHALLOW SHALLOW CHANNEL CHANNEL	100 320 256 1525 278	0.0040 0.0160 0.0500	0.240 0.025 0.050			8.000	0.459 0.035 0.020 0.053 0.022	A6A-B6A B6A-C6A D6A-E6A C6A-D6A E6A-F6A
				Т	ime of Concen	tration	.589	
SUB DA7 SHEET	100	0.0500	0.240				0.167	A7-B7
M' MD 55 II.	1 00	1.0	D	1		11/5/000	0.40	. 42 775

WinTR-55, Version 1.00.10 Page 1 11/5/2020 9:40:43 AM

Cabin Branch MD SHA Cabin Branch SUBS 1-9 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details (continued)

Sub-Area Identifier/	Length (ft)			Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)	
SHALLOW CHANNEL	947 919	0.0440	0.050			3.500	0.078 0.073	B7-C7 C7-D7
				Ti	me of Conce	ntration	.318	
SUB DA8								
SHEET SHALLOW SHALLOW CHANNEL CHANNEL	100 392 124 700 1346	0.0150 0.0800 0.0500	0.240 0.050 0.025			8.000 3.500	0.271 0.024 0.008 0.024 0.107	A8-B8 B8-C8,D8-E8 B8-C8,D8-E8 C8-D8 E8-F8
				Ti	me of Conce	ntration	.434	
							======	
SUB DA9 SHEET SHALLOW SHALLOW CHANNEL CHANNEL	100 870 670 619 1029	0.0600 0.0500 0.0380	0.240 0.050 0.025			8.000 3.500	0.047	A9-B9 B9-C9 C9-D9 D9-E9 E9-F9
				Ti	me of Conce	ntration	.372	
SUB DA4A							======	
SHEET SHALLOW	313	0.0800 0.0580	0.240 0.050			2 500	0.022	
CHANNEL CHANNEL	446 418					3.500 8.000	0.035	C4A-D4A D4A-E4A
				Ti	me of Conce	ntration	0.211	

Cabin Branch MD SHA Cabin Branch SUBS 6B Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)	
SUB DA6B SHEET SHALLOW CHANNEL	100 556 1357	0.0250 0.0200	0.011 0.025	Ti	ime of Conce	8.000 ntration	0.019 0.054 0.047	A6B-B6B B6B-C6B C6B-D6B
						=	======	

WinTR-20 Printed Page File Beginning of Input Data List R:\Projects\102054-MDSHA Cabin Branch\Engineering\Win TR-20\CabBranchRev.inp									
WinTR-20: V NOAA 14 pre Lat (dd): 3	cipitatio	on, smoothe		0 Ohio Rive MD Montgome		0.5	0		
D. D. D. D. D. D. D.	A 1 A 2 A 3 A 5 A 7 A 8 A 9 A 4A A 4B A 6A A 6B	Reach 1 Reach 1 Reach 2 Reach 3 Reach 4 Reach 4 Outlet Reach 2 Reach 2 Reach 3 Reach 3		3.51875 0.1515625 0.1406250 0.1328125 0.0296875 0.0765625 0.1546875 0.0140625 0.0937500 0.0468750 0.0140625	86. 83. 89. 88. 84. 87. 87.	1.819 0.655 0.746 0.362 0.318 0.434 0.372 0.211 0.409 0.589 0.120	YY YY YY YY YY YY	Y Y Y Y Y Y	
R R	H: each 1 each 2 each 3 each 4	Reach 2 Reach 3 Reach 4 Outlet	X-Sec 1 X-Sec 2 X-Sec 3 X-Sec 4		1628. 612. 1143. 1043.	1628. 612. 1143. 1043.			
1	SIS: _yr_stm 0_yr_stm 00_yr_stm			3.11 4.77 8.24	2_yr_tbl 10_yr_tbl 100_yr_tbl	2			
	-Sec 1	368.6 365.3 365.73 366.80 367.45 368.67 369.98 371.03 371.87 373.49	0. 5. 50. 100. 250. 500. 1000. 1662. 4389.	0. 6.03 23.59 35.99 63.55 98.55 169.24 322.27 731.33	0. 14.61 18.24 20.42 24.58 29.02 138.03 209.06 296.21	0.001 .001269 0.001876 0.002167 0.002664 0.003130 0.005036 0.005227 0.006555			
	-Sec 2 -Sec 3	362.56 360.3 360.67 361.54 361.94 362.82 363.90 365.60 366.50 368.34 350.18	0. 5. 50. 100. 250. 500. 1000. 1662. 4389.	0. 5.18 19.94 27.71 47.38 77.21 165.91 297.92 781.11	0. 14.92 18.77 20.51 24.37 31.74 98.48 191.34 307.50	0.001 0.002151 0.003352 0.005081 0.006780 0.006800 0.004687 0.005184 0.005501			
	-Sec 4	347.3 347.91 348.98 349.58 350.64 351.51 352.34 353.12 354.98 348.59	0. 5. 50. 100. 250. 500. 1000. 1662. 4389.	0. 6.76 22.17 33.16 111.43 279.05 448.67 615.35 1189.54	0. 12.30 16.74 19.30 187.83 198.51 208.77 218.37 375.88	0.0003 0.000697 0.002065 0.002639 0.002687 0.001480 0.001575 0.001722 0.002635			
		345.40 345.82 347.80 348.29 348.92 349.29 350.39 351.09 352.95	0. 5. 50. 100. 250. 500. 1000. 1662. 4389.	0. 1.92 31.52 41.52 64.58 87.04 203.42 312.51 836.90	0. 9.19 19.32 21.48 51.71 69.65 140.10 170.96 350.89	0.0003 0.030549 0.003101 0.000359 0.003440 0.008052 0.006606 0.007243 0.006485			

AINFALL	DISTRIBUTION 2_yr_tbl	ON:	0.1			
	10_yr_tbl	0.0 0.000993 0.00281 0.00544 0.00890 0.01318 0.01828 0.02420 0.03094 0.03851 0.04689 0.05610 0.06613 0.07698 0.08865 0.10114 0.11446 0.12859 0.14355 0.16474 0.18732 0.21129 0.23065 0.27097 0.46806 0.72903 0.76935 0.76935 0.76935 0.76935 0.76935 0.76935 0.97580 0.991135 0.993387 0.94390 0.95311 0.96149 0.96906 0.97580 0.99719 0.999100 0.999100 0.999110 0.999100	0.000133 0.00129 0.00327 0.00607 0.00969 0.01413 0.01940 0.02548 0.03239 0.04012 0.04867 0.05804 0.06823 0.07925 0.09108 0.10374 0.11722 0.13152 0.14768 0.16914 0.19200 0.21348 0.23703 0.28730 0.61581 0.73877 0.77490 0.79362 0.81731 0.85951 0.87430 0.88827 0.991375 0.991375 0.991375 0.99142 0.91375 0.92526 0.991375 0.995485 0.995485 0.995485 0.997047 0.97705 0.995485 0.99515 0.99762 0.9999271	0.000299 0.00162 0.00376 0.00376 0.00673 0.01051 0.01512 0.02055 0.02680 0.03387 0.04176 0.05048 0.06001 0.07037 0.08155 0.09355 0.10637 0.12001 0.13448 0.15186 0.17360 0.19674 0.21652 0.24426 0.30700 0.66226 0.74768 0.77961 0.79847 0.82188 0.84390 0.86253 0.87716 0.89097 0.90395 0.91612 0.92746 0.93798 0.94768 0.979827 0.99395 0.91612 0.92746 0.93798 0.94768 0.95656 0.96462 0.97185 0.97827 0.98386 0.99258 0.99571 0.99802 0.999503	0.000497 0.00198 0.00429 0.00742 0.01137 0.01614 0.02173 0.02815 0.03538 0.04344 0.05232 0.06202 0.07254 0.08388 0.09605 0.10903 0.12284 0.13747 0.15610 0.17812 0.20153 0.22039 0.25232 0.33774 0.69300 0.75574 0.69300 0.75574 0.78348 0.86552 0.87999 0.84814 0.86552 0.87999 0.89363 0.90645 0.91845 0.91845 0.92963 0.93999 0.94952 0.95824 0.96613 0.97320 0.97945 0.99838 0.999701	0.000729 0.00238 0.00238 0.00485 0.00814 0.01226 0.01719 0.02295 0.02953 0.03693 0.04515 0.05419 0.06406 0.07474 0.08625 0.09858 0.11173 0.12570 0.14049 0.16039 0.20638 0.22510 0.26123 0.38419 0.71270 0.76297 0.76297 0.76297 0.76297 0.76297 0.76297 0.78652 0.88800 0.85232 0.88848 0.89523 0.9892 0.92075 0.93177 0.94196 0.95133 0.95988 0.96761 0.97452 0.98060 0.98587 0.999871 0.999867
		0.00255 0.00582 0.00983 0.01456 0.02002 0.02621 0.03312 0.04076 0.04914 0.05823 0.06806 0.07862 0.08990 0.10191 0.11465 0.12812 0.14231 0.15723 0.17735 0.19866 0.22117 0.24109 0.28302		0.00377 0.00734 0.01163 0.01666 0.02241 0.02888 0.03609 0.04403 0.05269 0.06208 0.07220 0.08304 0.09462 0.10692 0.11995 0.13371 0.14819 0.16514 0.18573 0.20752 0.22650 0.25522 0.32168	0.00443 0.00814 0.01258 0.01775 0.02364 0.03027 0.03762 0.04570 0.05451 0.06404 0.07431 0.08530 0.09702 0.10947 0.12264 0.13654 0.15118 0.16916 0.18999 0.21203 0.23048 0.26361 0.35388	0.00511 0.00897 0.01355 0.01887 0.02491 0.03168 0.03918 0.04740 0.05636 0.06604 0.07645 0.08758 0.09945 0.11204 0.12536 0.13941 0.15419 0.17323 0.19430 0.21658 0.23535 0.27287 0.39916

```
0.71698
                      0.72713
                                 0.73639
                                            0.74478
                                                       0.75228
           0.75891
                     0.76465
                                 0.76952
                                            0.77350
                                                       0.77660
          0.77883
                                 0.78797
                                            0.79248
                                                       0.79693
                      0.78342
           0.80134
                      0.80570
                                 0.81001
                                            0.81427
                                                       0.81848
           0.82265
                      0.82677
                                 0.83084
                                            0.83486
                                                       0.83884
           0.84277
                      0.84581
                                 0.84882
                                            0.85181
                                                       0.85476
           0.85769
                      0.86059
                                 0.86346
                                            0.86629
                                                       0.86910
                      0.87464
           0.87188
                                 0.87736
                                            0.88005
                                                       0.88272
           0.88535
                      0.88796
                                 0.89053
                                            0.89308
                                                       0.89560
                      0.90055
           0.89809
                                 0.90298
                                            0.90538
                                                       0.90776
           0.91010
                      0.91242
                                 0.91470
                                            0.91696
                                                       0.91919
                                                       0.92989
           0.92138
                      0.92355
                                 0.92569
                                            0.92780
           0.93194
                     0.93396
                                 0.93596
                                            0.93792
                                                       0.93986
           0.94177
                     0.94364
                                 0.94549
                                            0.94731
                                                       0.94910
           0.95086
                      0.95260
                                 0.95430
                                            0.95597
                                                       0.95762
           0.95924
                      0.96082
                                 0.96238
                                            0.96391
                                                       0.96541
           0.96688
                      0.96832
                                 0.96973
                                            0.97112
                                                       0.97247
           0.97379
                      0.97509
                                 0.97636
                                            0.97759
                                                       0.97880
                      0.98113
           0.97998
                                 0.98225
                                            0.98334
                                                       0.98441
           0.98544
                                                       0.98928
                      0.98645
                                 0.98742
                                            0.98837
           0.99017
                      0.99103
                                 0.99186
                                            0.99266
                                                       0.99343
           0.99418
                      0.99489
                                 0.99557
                                            0.99623
                                                       0.99686
           0.99745
                      0.99802
                                 0.99856
                                            0.999068
                                                       0.999549
           1.0
100_yr_tbl
                      0.1
                      0.000580
                                0.00119
                                            0.00184
                                                       0.00251
           0.0
           0.00322
                      0.00396
                                 0.00473
                                            0.00554
                                                       0.00638
           0.00725
                      0.00815
                                 0.00908
                                            0.01005
                                                       0.01104
           0.01207
                      0.01314
                                 0.01423
                                            0.01536
                                                       0.01652
                      0.01893
           0.01771
                                 0.02019
                                            0.02147
                                                       0.02279
           0.02415
                      0.02553
                                 0.02695
                                            0.02840
                                                       0.02988
                                 0.03451
           0.03139
                      0.03293
                                            0.03612
                                                       0.03776
           0.03944
                      0.04114
                                 0.04288
                                            0.04465
                                                       0.04645
           0.04829
                      0.05015
                                 0.05205
                                            0.05398
                                                       0.05595
           0.05794
                      0.05997
                                 0.06203
                                            0.06412
                                                       0.06625
           0.06840
                     0.07059
                                            0.07507
                                 0.07281
                                                       0.07735
           0.07967
                      0.08202
                                 0.08440
                                            0.08681
                                                       0.08926
           0.09174
                      0.09425
                                 0.09679
                                            0.09937
                                                       0.10197
           0.10461
                      0.10728
                                 0.10999
                                            0.11272
                                                       0.11549
           0.11829
                      0.12112
                                 0.12399
                                            0.12688
                                                       0.12981
           0.13277
                      0.13576
                                 0.13879
                                            0.14185
                                                       0.14494
           0.14806
                                 0.15440
                      0.15121
                                            0.15762
                                                       0.16087
           0.16415
                      0.16746
                                 0.17081
                                            0.17419
                                                       0.17760
           0.18104
                      0.18510
                                 0.18921
                                            0.19336
                                                       0.19755
           0.20179
                      0.20608
                                 0.21040
                                            0.21478
                                                       0.21920
          0.22366
                     0.22817
                                 0.23273
                                            0.23733
                                                       0.24197
                      0.24870
                                 0.25179
                                            0.25592
          0.24666
                                                       0.26109
          0.26731
                      0.27458
                                 0.28289
                                            0.29225
                                                       0.30265
           0.31409
                      0.33116
                                 0.35298
                                            0.38384
                                                       0.42284
           0.47922
                      0.57716
                                 0.61616
                                            0.64702
                                                       0.66884
           0.68591
                      0.69735
                                 0.70775
                                            0.71711
                                                       0.72542
           0.73269
                      0.73891
                                 0.74408
                                            0.74821
                                                       0.75130
                                                       0.77183
           0.75334
                      0.75803
                                 0.76267
                                            0.76727
           0.77634
                      0.78080
                                 0.78522
                                            0.78960
                                                       0.79392
           0.79821
                      0.80245
                                 0.80664
                                            0.81079
                                                       0.81490
           0.81896
                      0.82240
                                 0.82581
                                            0.82919
                                                       0.83254
           0.83585
                      0.83913
                                 0.84238
                                            0.84560
                                                       0.84879
           0.85194
                     0.85506
                                                       0.86424
                                 0.85815
                                            0.86121
           0.86723
                      0.87019
                                 0.87312
                                            0.87601
                                                       0.87888
           0.88171
                      0.88451
                                 0.88728
                                            0.89001
                                                       0.89272
           0.89539
                      0.89803
                                 0.90063
                                            0.90321
                                                       0.90575
           0.90826
                                 0.91319
                      0.91074
                                            0.91560
                                                       0.91798
           0.92033
                      0.92265
                                 0.92493
                                            0.92719
                                                       0.92941
                      0.93375
                                 0.93588
           0.93160
                                            0.93797
                                                       0.94003
           0.94206
                      0.94405
                                 0.94602
                                            0.94795
                                                       0.94985
           0.95171
                      0.95355
                                 0.95535
                                            0.95712
                                                       0.95886
           0.96056
                      0.96224
                                 0.96388
                                            0.96549
                                                       0.96707
          0.96861
                      0.97012
                                 0.97160
                                            0.97305
                                                       0.97447
                                 0.97853
          0.97585
                      0.97721
                                            0.97981
                                                       0.98107
           0.98229
                      0.98348
                                 0.98464
                                            0.98577
                                                       0.98686
           0.98793
                      0.98896
                                 0.98995
                                            0.99092
                                                       0.99185
           0.99275
                      0.99362
                                 0.99446
                                            0.99527
                                                       0.99604
           0.99678
                      0.99749
                                 0.99816
                                            0.99881
                                                       0.999420
           1.0
```

0.47379

0.60084

0.64612

0.67832

0.69959

0.10 YY N YY N

WinTR-20 Printed Page File End of Input Data List

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

Name of printed page file:

R:\Projects\102054-MDSHA Cabin Branch\Engineering\Win TR-20\CabBranchRev.out

STORM	2	vr	stm

Area or	Drainage	Rain Gage	Runoff		Deak	Flow	
Reach Identifier			Amount	Elevation	Time	Rate	Rate
Identifier	(sq m1)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
DA 1	3.519		1.333		13.20	1051.4	298.79
Line							
Start Time			Values @ ti				
(hr)	(CIS)	(cfs)	(CIS)	(cfs)	(CIS)	(CIS)	(CIS)
10.000			1.5	2.2	3.2	4.4	5.8
10.700 11.400	7.3 22.6		10.9 30.4	12.8 36.2	14.9 44.6	17.1 57.7	19.6 80.3
12.100		173.4	247.1	338.7	451.3	578.0	705.6
12.800	821.3	916.5	986.8		1051.4	1044.8	1018.8
13.500		924.6	859.8	787.6	714.7	648.9	592.1
14.200	542.4	499.4	462.5	430.3	401.8	376.9	356.0
14.900	338.3	322.9	309.3	297.3	286.2	275.8	265.8
15.600	256.4	247.3	238.3	229.7	221.3	213.3	205.7
16.300	198.5	191.8	185.7	180.0	174.8	170.2	166.0
17.000		158.6	155.2	152.0	148.9	145.9	143.0
17.700 18.400	140.4 126.5	138.0 124.7	135.8 123.0	133.8 121.3	131.9 119.6	130.1 118.0	128.3 116.3
19.100	114.6	113.0	111.3	109.7	108.0	106.3	104.7
19.800	103.0	101.4	99.7	98.0	96.4	94.7	93.0
20.500	91.4	89.7	88.0	86.4	84.7	83.0	81.3
21.200	79.6	77.9	76.3	74.6	72.9	71.2	69.4
21.900			64.3	62.6	60.9	59.1	57.4
22.600			52.2	50.5	48.8	47.0	45.3
23.300		41.8	40.1	38.3	36.6	34.8	33.1
24.000	31.3		27.8	26.0	24.2	22.3	20.5
24.700		16.9	15.1 6.0	13.5	11.9 4.5	10.5	9.2
25.400 26.100		6.9 2.5	2.2	5.2 1.9	1.6	3.9 1.4	3.3 1.2
26.800			0.8	0.6	0.6	0.0	1.2
20.000	1.0	0.5			0.0	0.0	
Area or			Runoff			Flow	
Reach	Area		Amount	Elevation		Rate	
Identiller	(sq m1)	Location	(in)	(IT)	(nr)	(cfs)	(CSM)
DA 2	0.152		1.678		12.47	118.5	781.71
Line							
Start Time		Flow	Values @ ti	me increment	of 0.	100 hr	
(hr)	(cfs)						
9.000	0.0	0.5	0.7	0.8	1.0	1.2	1.3
9.700		1.7	1.9	2.1	2.3	2.5	2.7
10.400			3.2	3.3	3.2		3.1
11.100	3.4	3.8	4.4	5.2	6.1	7.2	8.8
WinTR-20 Ve	ersion 3.2	0	Page	1		09/04/2020	13:12

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

Line Start Time (hr)	 (cfs)		Values @ time (cfs)				
11.800 12.500 13.200 13.900 14.600 15.300 16.000 17.400 18.100 18.800 19.500 20.200 20.900 21.600 22.300 23.700	29.4 11.0 11.1 9.9 7.4 6.7 6.2 5.6 5.1 4.5 3.9 3.3 2.8 2.2	24.5 10.9 11.0 9.3 7.3 6.6 6.1 5.5 5.0 4.4 3.8 3.3 2.7 2.1 1.5	86.8 20.6 11.1 10.9 8.8 7.2 6.6 6.0 5.5 4.9 4.3 3.8 3.2 2.6 2.0 1.4	7.1 6.5 5.9 5.4 4.8 4.2 3.7 3.1 2.5 1.9	1.8 1.2	7.7 6.9 6.3 5.8 5.2 4.7 4.1 3.5 2.9 2.3	1.7 1.1
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area	ID or	Amount (in)	Elevation	Time	Rate	Rate
Reach 1	3.670	Upstream	1.347	371.13	13.22	1078.6	293.86
Line Start Time (hr)			Values @ time				
9.000 9.700 10.400 11.100 11.800 12.500 13.200 13.900 14.600 15.300 16.000	1078.0 726.1 412.9 296.1	1.7 7.5 20.9 73.7 683.3 1069.3 659.9 388.1 285.1	1.9 9.0 24.0 104.9 792.3 1039.4 603.4 367.2 274.6 212.8	2.2 10.6 27.7 158.8 890.4 995.4 553.5 349.1 264.8 205.6	3.2 12.3 32.1 241.2 971.6 939.1 510.6 333.6 255.2 198.8	3.9 14.0 37.6 345.6 1030.9 872.3 473.6 319.9 246.1 192.6	1066.8 798.9 441.4 307.6 237.2
17.400 18.100 18.800 19.500 20.200 20.900 21.600 22.300 23.000 23.700	155.0 137.5 124.7 112.5 100.3 88.0 75.6 63.0 50.3 37.6	170.8 152.0 135.6 123.0 110.7 98.5 86.3 73.8 61.2 48.5 35.7	172.6 149.0 133.7 121.2 109.0 96.8 84.5 72.0 59.4 46.7 33.9	168.7 146.3 131.9 119.5 107.3 95.0 82.7 70.2 57.6 44.9 32.0	165.0 143.8 130.0 117.7 105.5 93.3 81.0 68.4 55.8 43.0 30.2	161.5 141.6 128.2 116.0 103.8 91.5 79.2 66.6 54.0 41.2 28.3	130.2 139.5 126.5 114.2 102.0 89.8 77.4 64.8 52.2 39.4 26.0

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

Line Start Time			Values @ time				
(hr)	(cfs)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
24.400 25.100 25.800 26.500 27.200	11.9 4.5 1.6	10.5	3.2	2.9	2.5	2.2	1.9
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	Elevation (ft)	Peak Time (hr)	Flow Rate (cfs)	Rate
Reach 1	3.670	Downstream	1.347	371.13	13.26	1077.7	293.63
Line Start Time (hr)			Values @ time				
9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100 16.800 17.500 18.200 18.900 19.600 20.300 21.000 21.700 22.400 23.100 23.800 24.500 25.200 25.900 26.600 27.300	1.6 6.7 19.4 63.1 619.0 1076.3 696.3 401.6 291.2 225.1 179.4 153.7 136.7 123.9 111.7 99.5 87.2 74.8 62.2 49.5 36.7 23.4	1.8 8.1 22.2 85.2 732.3 1057.5 634.2 378.5 280.4 217.1 174.9 150.6 134.8 122.2 110.0 97.8 85.5 73.0 60.4 47.7 34.9 21.5 9.9 3.6	9.7 25.6 124.8 838.0 1021.9 580.4 358.9 270.2 209.6 170.8 147.8 132.9 120.4 108.2 96.0 83.7 71.2 58.6 45.9 33.1 19.7	2.6 11.3 29.6 192.6 929.5 972.2 533.5 341.9 260.5 202.5 167.0 145.2 131.1 118.7 106.5 94.3 81.9 69.4 56.8 44.1 31.2	3.5 13.0 34.4 286.0 1000.9 910.6 493.4 327.2 251.1 196.0 163.4 142.8 129.2 116.9 104.8 92.5 80.2 67.6 55.0 42.2 29.4 16.1	4.4 14.8 40.8 394.9 1048.3 839.8 458.8 314.3 242.1 189.9 160.0 140.7 127.5 115.2 103.0 90.8 78.4 65.8 53.2 40.4 27.3 14.4	5.4 16.9 49.7 506.5 1073.2 766.1 428.4 302.4 233.4 184.4 156.8 138.6 125.7 113.5 101.3 89.0 76.6 64.0 51.4 38.6 25.2 12.8
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	Elevation (ft)	Peak Time (hr)	Flow Rate (cfs)	Rate
DA 3	0.141		1.754		12.54	106.0	753.51

Line Start Time		Flow	Values @ time	increment	of O	100 hr	
(hr)	(cfs)	(cfs)		(cfs)	(cfs)	(cfs)	(cfs)
8.800 9.500 10.200 11.600 11.600 12.300 13.700 14.400 15.100 15.800 17.200 17.200 17.900 18.600 19.300 20.000 20.700 21.400 22.100 22.800 23.500 24.200	0.0 1.3 2.6 3.8 79.0 49.5 14.1 10.7 7.0.6 6.0 5.5 5.0 4.5 3.4 2.8 2.3 1.7 1.2 0.6	0.6 1.5 2.8 3.2 98.6 40.5 12.7 9.9 7.3 6.0 5.5 4.4 3.8 3.3 2.7 2.2 1.6 1.1	0.6 1.7 3.0 3.5 10.4 106.0 33.4 11.6 10.6 9.6 7.2 6.4 5.9 5.4 4.8 4.3 3.8 3.2 2.7 2.1 1.6	0.7 1.9 3.2 3.8 14.2 102.1 27.8 11.2 10.5 9.1 7.0 6.4 5.8 5.3 4.8 4.2 3.7 3.1 2.6 2.0 1.5 0.9	0.8 2.1 3.3 4.3 20.9 90.4 21.0 10.6 6.9 6.3 5.8 5.2 4.7 4.2 3.6 3.1 2.5 1.9	1.0 2.3 3.4 5.0 33.7 75.0 19.7 11.0 10.3 8.2 6.8 6.2 5.7 5.1 4.6 4.1 3.5 3.0 2.4 1.9 1.3	1.1 2.4 3.4 5.8 54.2 60.8 16.6 10.9 10.2 7.8 6.7 6.1 5.6 5.1 4.5 4.0 3.5 2.9 2.3 1.8 1.2 0.7
Area or Reach Identifier	Area	Rain Gage ID or Location	Amount	Elevation (ft)		Rate (cfs)	 Rate (csm)
DA 4A	0.014		1.582		12.18	21.6	1538.44
Line Start Time (hr)	(cfs)		Values @ time (cfs)				 (cfs)
11.000 11.700 12.400 13.100 13.800 14.500 15.200 15.900 16.600 17.300 18.000	0.0 2.1 8.5 1.5 1.1 0.8 0.7 0.6 0.6	0.6 3.0 5.6 1.3 1.1 1.7 0.7 0.7 0.6 0.6	0.7 4.8 4.0 1.1 1.1 1.0 0.7 0.7 0.6 0.6 0.5	0.8 8.4 2.8 0.9 1.1 1.0 0.7 0.7 0.6 0.6 0.5	0.9 16.3 2.2 0.7 1.1 1.0 0.7 0.7 0.6 0.5	1.1 21.1 1.9 0.7 1.1 1.0 0.7 0.6 0.6	1.4 13.6 1.7 1.0 1.1 0.9 0.7 0.6 0.6

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

						-	
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
	Area		Amount				Rate
Identifier	(sq mi)	Location	(in)		(hr)	(cfs)	(csm)
				, ,	, ,	. ,	,
DA 4B	0.094		1.828		12.29	104.9	1119.41
Line							
Start Time		Flow	Values @ tim	ne increment	of O.	100 hr	
(hr)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
(/	(010)	(328)	(020)	(322)	(020)	(010)	(022)
8.500	0.0	0.5	0.6	0.7	0.7	0.8	0.9
9.200			1.4	1.5	1.6	1.8	1.9
9.900			2.3	2.4	2.5	2.7	2.8
10.600			2.4	2.3	2.6	3.1	3.7
11.300			5.9	7.0	9.1	12.7	18.8
12.000			89.1	104.8	91.7	68.2	49.9
12.700				16.4	13.7	11.6	9.9
13.400			5.9	5.8	6.3	6.9	7.2
14.100			7.3	7.3	7.2	7.1	7.0
14.800			6.8	6.7	6.3	5.7	5.3
15.500	5.1	4.9	4.8	4.7	4.6	4.6	4.5
16.200	4.5	4.4	4.4	4.3	4.3	4.2	4.2
16.900	4.1	4.1	4.0	4.0	3.9	3.9	3.8
17.600	3.8	3.7	3.7	3.6	3.6	3.5	3.5
18.300			3.3	3.3	3.2	3.2	3.1
19.000			2.9	2.9	2.8	2.8	2.7
19.700			2.6	2.5	2.5	2.4	2.4
20.400			2.2	2.2	2.1	2.0	2.0
21.100			1.8	1.8	1.7	1.7	1.6
21.800			1.5	1.4	1.3	1.3	
							1.2
22.500			1.1	1.0	1.0	0.9	0.9
23.200	0.8	0.7	0.7	0.6	0.6	0.5	0.0
7202 02	Drainago	Pain Cago	Punoff		Doole	Flow	
Area Or	Drainage	Rain Gage	Runoff Amount	Floretion	Peak	FIOW	Doto
Reach	Area	ID OF	Amount	Fievacion	11me	kate (=:f =:)	Rate
ldentiller	(sq m1)	Location	(in)	(IT)	(nr)	(CIS)	(csm)
_ , ,	0 010		4 0 7 4	0.65 5.6	10 00	1100 0	
Reach 2	3.919	Upstream	1.374	365.76	13.22	1120.0	285.80
Line							
Start Time			Values @ tim				
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
8.500	0.0	0.5	0.6	0.7	1.3	1.4	1.6
9.200			3.4	3.9	4.4	4.9	5.4
9.900	5.9	6.4	7.4	8.6	9.7	11.1	12.6
10.600	14.3	15.8	17.1	18.7	20.8	24.1	27.6
11.300			42.3	49.6	60.1	75.8	100.8
12.000			357.2	483.3	593.6	686.0	775.1
12.700			1012.8		1104.1	1119.6	1115.0
13.400			995.3	931.5	859.7	785.7	715.7
14.100			552.7	512.5	477.7	447.2	420.2
14.800			360.0	344.9	331.2	318.4	306.3
15.500			273.8	264.1	254.7	245.8	237.3
16.200			214.2	207.6	201.4	195.7	190.5
10.∠00	449.4	ZZ1.5	214.2	407.0	∠∪⊥. 4	133./	150.5
WinTR-20 V	oraion 2 0	0	Da ~ a	E		09/04/2020	12.12
MIIIIK-ZU V	CIBIUII 3.2	U	Page	5		09/04/2020	13.17

					_	-	
Line							
Start Time		Flow	Values @ time	increment	of 0.1	100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
16.900	185.9	181.7	177.8	174.1	170.5	167.1	163.9
17.600	160.7	157.8	155.0	152.5	150.2	148.1	145.9
18.300	143.9	141.4		137.5	135.6	133.7	131.8
19.000	129.9	128.0	126.2	124.3	122.4	120.5	118.7
19.700	116.8	114.9		111.2	109.3	107.4	105.6
20.400	103.7	101.8		98.0	96.1	94.3	92.4
21.100	90.5	88.6		84.8	82.8	80.9	79.0
21.800	77.1	75.2		71.3	69.4		65.5
22.500	63.6	61.6		57.7	55.8	53.8	51.9
23.200	49.9	47.9		44.0	42.1	40.1	37.6
23.200	35.7		31.9	29.9	27.4	25.1	23.3
24.600	21.5	19.7	17.9	16.1	14.4		11.3
25.300	9.9		7.5	6.5	5.6		4.2
26.000	3.6			2.3	2.0		1.5
26.700	1.3	1.1	1.0	0.8	0.7	0.6	0.0
20.700	1.3	1.1	1.0	0.0	0.7	0.0	0.0
Area or	Drainage	Pain Cage	Runoff		Doak	Flow	
	_	ID or	Amount	Elevation			Rate
Identifier			(in)	/ f +)	/ hr)	(afa)	(aam)
identifier	(SQ IIII)	Location	(111)	(IC)	(III)	(CIS)	(CSIII)
Reach 2	3.919 т	Downstream	1.374	365.76	13.25	1119.8	285.75
11000011 2	3,727	- 0 W112 01 00W	1.071	303170	10.10		2001.0
Line							
Start Time		Flow	Values @ time	increment	of 0.1	L00 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
8.700	0.0	0.6		1.4	1.6		2.8
9.400	3.3			4.8	5.3		6.3
10.100	7.1	8.3		10.7	12.3	13.9	15.5
10.800	16.8	18.3		23.4	26.7	30.7	35.4
11.500	40.9			71.5	94.0	132.3	205.6
12.200	325.9	454.5	569.3	664.5	754.5	842.3	923.5
12.900	996.9	1056.8		1118.2	1117.5	1097.3	1059.6
13.600	1008.6	947.2		803.0	731.4	667.4	611.9
14.300	563.3	521.5	485.5	454.0	426.1	402.1	381.5
15.000	363.8	348.4	334.4	321.4	309.1	297.4	286.5
15.700	276.2	266.3	256.9	247.9	239.3	231.0	223.2
16.400	215.9	209.1	202.8	197.0	191.7	186.9	182.7
17.100	178.7	174.9	171.3	167.9	164.6	161.5	158.4
17.800	155.6	153.1	150.8	148.6	146.4	144.4	141.9
18.500	139.9	138.0	136.0	134.1	132.2	130.4	128.5
19.200	126.6	124.7	122.9	121.0	119.1	117.2	115.4
19.900	113.5	111.6	109.8	107.9	106.0	104.1	102.2
20.600	100.4	98.5	96.6	94.7	92.8	90.9	89.0
21.300	87.1	85.2	83.3	81.4	79.5	77.5	75.6
22.000	73.7	71.8	69.8	67.9	66.0	64.0	62.1
22.700	60.1	58.2	56.2	54.3	52.3	50.4	48.4
23.400	46.4	44.5	42.5	40.6	38.1	36.2	34.3
24.100	32.3	30.4	28.2	25.6	23.8	21.9	20.1
24.800	18.3	16.5	14.8	13.1	11.6	10.2	8.9
25.500	7.7	6.7	5.8	5.0	4.3	3.7	3.2
WinTR-20 Ve	ersion 3.20	0	Page 6			09/04/2020	13:12

					-	-	
Line Start Time (hr)		Flow (cfs)	Values @ time (cfs)				(cfs)
26.200 26.900	2.8 1.0	2.4	2.1 0.7	1.8 0.6	1.6	1.3	1.2
Area or Reach Identifier	Area	ID or	Amount	Elevation (ft)	Time	rlow Rate (cfs)	Rate
DA 5	0.133		1.533		12.26	132.4	996.97
Line Start Time (hr)	 (cfs)		Values @ time (cfs)				
9.300 10.000 10.700 11.400 12.100 12.800 13.500 14.200 14.900 15.600 16.300 17.000 17.700 18.400 19.100 19.800 20.500 21.200 21.200 21.900 22.600 23.300 24.000	0.0 1.4 2.1 4.9 70.3 28.8 8.3 9.4 8.8 6.2 5.7 5.3 4.8 4.4 3.9 2.4 1.9 1.5 1.0	22.4 7.0 9.4 8.7 6.1 5.7 5.2 4.8 4.3 3.8 3.3 2.9 2.4 1.9	0.7 1.7 2.0 7.0 130.5 18.5 7.3 9.3 8.5 6.0 5.6 5.1 4.7 4.2 3.7 3.3 2.8 2.3 1.8 1.3 0.8	0.8 1.9 2.3 9.6 105.1 15.7 8.3 9.2 7.9 6.0 5.5 5.1 4.6 4.2 3.7 3.2 2.7 2.2 1.7 1.2 0.7	1.0 2.0 2.8 14.0 75.3 13.5 9.0 9.1 7.1 5.9 5.5 5.0 4.6 4.1 3.6 3.1 2.6 2.2 1.7 1.2 0.7	1.1 2.2 3.4 21.6 54.3 11.7 9.3 9.0 6.7 5.8 5.4 4.9 4.5 4.0 3.5 3.1 2.6 2.1 1.6	1.3 2.3 4.1 36.9 39.1 9.9 9.4 8.9 6.4 5.8 5.3 4.9 4.4 4.0 3.5 3.0 2.5 2.0 0.5
Reach	Area	ID or	Runoff Amount (in)	Elevation (ft)	Time	rlow Rate (cfs)	Rate
DA 6A	0.047		1.810		12.40	42.7	911.69
Line Start Time (hr)			Values @ time (cfs)				
9.300 10.000 10.700 11.400 12.100		1.1	1.1 1.2 2.9	1.2 1.3 3.6	1.2 1.4 4.7	1.6 6.6	0.9 1.4 1.8 10.1 26.5
WinTR-20 Ve	ersion 3.20	0	Page 7	,		09/04/2020	13:12

Line Start Time (hr)			Values @ time				
12.800 13.500 14.200 14.900 15.600 16.300 17.000 17.700 18.400 19.100 19.800 20.500 21.200 21.900 22.600	20.7 5.0 3.6 3.5 2.6 2.3 2.1 1.9 1.7 1.5 1.4 1.2 1.0 0.8	4.2 3.6 3.5 2.5 2.2 2.1 1.9 1.7 1.5 1.3 1.1	12.7 3.6 3.6 3.4 2.5 2.2 2.0 1.8 1.7 1.5 1.3 1.1 0.9 0.7 0.5	10.2 3.4 3.6 3.3 2.4 2.2 2.0 1.8 1.6 1.5 1.3 1.1 0.9 0.7 0.5	8.4 3.4 3.6 3.1 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.1 0.9 0.7	2.9 2.3 2.1 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.7	5.9 3.6 3.5 2.8 2.3 2.1 1.9 1.7 1.6 1.4 1.2 1.0 0.8 0.6
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location		Elevation (ft)	Time	Rate	Rate
DA 6B	0.014		2.399		12.13	35.1	2495.32
Line Start Time (hr)			Values @ time (cfs)				
Start Time	(cfs) 0.0 0.6 0.9 1.1 1.0 3.4 11.1 1.9 1.3 1.2 1.0 0.8	(cfs) 0.5 0.6 0.9 1.1 1.2 4.5 6.8 1.6 1.3 1.2 0.9 0.8 0.7 0.7	(cfs) 0.5 0.6 1.0 1.1 1.4 6.7 5.0 1.4 1.3 1.2 0.8 0.8 0.7		(cfs) 0.5 0.8 1.0 0.7 1.9 18.2 2.6 0.9 1.3 1.2 0.8 0.8	(cfs) 0.6 0.9 1.0 0.7 2.1 32.9 2.3 0.7 1.3 1.2 0.8 0.7 0.7	(cfs) 0.6 0.9 1.0 0.8 2.3 22.0 2.1 1.1 1.3 1.1 0.8 0.7 0.7
Start Time (hr) 8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.700 14.400 15.100 15.800 16.500 17.200 17.900	(cfs) 0.0 0.6 0.9 1.1 1.0 3.4 11.1 1.9 1.3 1.2 1.0 0.8 0.7 0.7 0.6 0.5 Drainage Area	(cfs) 0.5 0.6 0.9 1.1 1.2 4.5 6.8 1.6 1.3 1.2 0.9 0.8 0.7 0.7	(cfs) 0.5 0.6 1.0 1.1 1.4 6.7 5.0 1.4 1.3 1.2 0.8 0.8 0.7 0.6 0.6 0.5 Runoff Amount	(cfs) 0.5 0.8 1.0 1.1 1.6 10.4 3.4 1.2 1.3 1.2 0.8 0.8 0.7 0.6 0.6	(cfs) 0.5 0.8 1.0 0.7 1.9 18.2 2.6 0.9 1.3 1.2 0.8 0.7 0.6 0.0 Peak	(cfs) 0.6 0.9 1.0 0.7 2.1 32.9 2.3 0.7 1.3 1.2 0.8 0.7 0.7 0.6 0.6	(cfs) 0.6 0.9 1.0 0.8 2.3 22.0 2.1 1.1 1.3 1.1 0.8 0.7 0.7 0.6 0.5

Line Start Time		Flow	Values @ time	e increment	of 0.	100 hr	
(hr)			(cfs)				
8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.700 14.400 15.100 15.800 17.200 17.200 17.900 18.600 19.300 20.000 20.700 21.400 22.100 22.800 24.200 24.900 25.600	0.0 1.2 6.0 12.2 22.5 61.1 634.2 1089.9 959.4 535.7 361.2 275.6 217.6 182.7 160.2 144.4 130.0 116.2 102.4 88.4 74.3 60.0 45.3 30.4 16.5	0.5 1.7 6.7 13.6 25.1 75.1 723.8 1125.6 890.3 499.5 346.4 266.1 211.2 179.1 157.8 142.3 128.0 114.2 100.4 86.4 72.3 58.0 43.2 28.1	0.5 2.0 7.5 15.1 29.0 96.9 785.0 1141.5 816.8 467.9 332.5 256.9 205.3 175.6 155.5 140.3 126.0 112.2 98.4 84.4 70.2 55.5 41.2 255.5	0.5 2.3 8.2 16.9 33.3 132.5 846.0 1137.4 745.6 439.9 319.5 248.2 199.9 172.2 153.3 138.3 124.1 110.3 96.4 82.4 68.2 53.4 38.7 23.8 11.6 4.3	0.5 2.9 9.0 18.3 38.5 197.5 910.5 1114.1 681.7 415.7 307.4 239.9 195.1 168.9 151.1 108.3 94.4 80.4 66.1 51.4 36.7 21.9 10.2	0.6 4.0 9.7 19.6 44.5 325.7 975.2 1073.6 626.3 395.0 296.1 231.9 190.7 165.8 148.5 133.9 120.1 106.3 92.4 78.3 64.1 49.3 34.3 20.1 8.9 3.2	0.6 5.3 10.7 20.8 51.4 493.7 1037.5 1020.9 577.6 377.2 285.6 224.5 186.6 162.9 146.4 131.9 118.2 104.3 90.4 76.3 47.3 32.3 18.3 7.7 2.8
26.300 27.000	2.4 0.9		1.8 0.6	1.6 0.0	1.3	1.2	1.0
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area	ID or	Amount	Elevation	Time	Rate (cfs)	Rate
Reach 3	4.112 I	Downstream	1.387	352.50	13.34	1131.6	275.16
Line Start Time		Flor	Values @ time	ingromont	· of O	100 bx	
(hr)			(cfs)				
9.500 10.200 10.900 11.600 12.300 13.700 14.400 15.100 15.800 16.500 17.200	0.0 10.8 20.8 51.8 482.2 1029.5 1019.7 585.0 379.9 286.8 225.4 187.1	4.0 12.1 22.7 62.0 607.0 1079.6 960.0 542.2 363.3 276.7 218.4 183.2	6.1 13.5 25.5 76.9 700.2 1113.9 892.6 505.1 348.2 267.1 212.0 179.5	7.3 15.1 29.0 100.4 773.6 1130.3 822.0 472.6 334.1 257.9 206.0 175.9	8.1 16.7 33.3 140.3 840.0 1127.8 753.4 444.2 321.0 249.1 200.6 172.5	8.9 18.1 38.5 215.1 905.1 1106.6 690.4 419.6 308.8 240.7 195.7 169.2	9.7 19.4 44.4 339.0 969.3 1069.4 634.3 398.3 297.5 232.8 191.2 166.1
WinTR-20 Ve	ersion 3.20)	Page 9)		09/04/2020	13:12

						-	
Line Start Time (hr)	 (cfs)		Values @ time (cfs)			hr (cfs)	(cfs)
17.900 18.600 19.300 20.000 20.700 21.400 22.100 22.800 23.500 24.200 24.900 25.600 26.300 27.000	163.2 146.7 132.1 118.3 104.5 90.6 76.5 62.2 47.5 32.5 18.4 7.9 2.9		28.1 14.9 5.9 2.1	155.7 140.5 126.2 112.4 98.6 84.6 70.4 55.8 41.3 25.9 13.3 5.1 1.8 0.0	153.5 138.4 124.2 110.4 96.6 82.5 68.3 53.6 39.0 24.0 11.8 4.4	151.1 136.2 122.2 108.5 94.6 80.5 66.3 51.6 36.7 22.1 10.3 3.8	148.8 134.1 120.3 106.5 92.6 78.5 64.3 49.5 34.6 20.3 9.1 3.3
	Area	ID or	Amount	 Elevation (ft)	Time	Rate	Rate (csm)
DA 7	0.030		1.938		12.23	40.9	1379.35
Line Start Time (hr)	 (cfs)		Values @ time (cfs)				(cfs)
9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100 16.800 17.500 18.200 18.900 19.600 20.300 21.000 21.700	0.0 0.9 1.2 1.6 8.5 12.9 2.4 2.3 1.7 1.5 1.4 1.2 1.1 0.9 0.8 0.6	1.9 14.0 9.1 2.4 2.3 1.6 1.5 1.3 1.2 1.1	1.0 2.1 25.4 6.7 2.0 2.4 2.3 1.6 1.4 1.3 1.2 1.1	0.7 1.0 0.9 2.5 39.4 5.3 1.7 2.4 2.2 1.6 1.4 1.3 1.2 1.1 0.8 0.7 0.6	0.7 1.0 0.9 2.9 37.9 4.4 1.9 2.4 2.2 1.5 1.4 1.3 1.2 1.1 0.9 0.8 0.7 0.6	0.8 1.1 1.1 4.0 27.0 3.8 2.2 2.4 2.0 1.5 1.4 1.3 1.2 1.0 0.9 0.8 0.7 0.6	0.8
Area or Reach	Area	Rain Gage ID or	Amount	Elevation	Time	Rate	Rate
Identifier		Location		(ft)		(cfs)	(csm)
DA 8	0.077		1.906		12.31	86.6	1130.60

Page 10

09/04/2020 13:12

WinTR-20 Version 3.20

Line							
Start Time (hr)			Values @ time (cfs)				
8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 15.400 16.100 16.800 17.500 18.200 18.200 19.600 20.300 21.000 22.400 23.100	0.3 0.9 1.8 2.6 3.2 15.7 44.6 8.7 6.0 5.9 4.5 3.5 3.2 2.9 2.6 2.3 2.0 1.7	1.0 1.9 2.6 3.8 24.8 32.8 7.3 6.1 5.8 4.3 3.7 3.5 3.2 2.9 2.5 2.2 1.9 1.6 1.3	0.6 1.2 2.0 2.5 4.5 43.5 24.2 6.1 6.1 5.8 4.1 3.7 3.4 3.1 2.8 2.5 2.2 1.9 1.6 1.3 0.9 0.6	0.7 1.3 2.1 2.2 5.2 71.1 18.4 5.2 6.1 5.7 4.0 3.7 3.4 3.1 2.8 2.5 2.2 1.8 1.5 1.2 0.9 0.6	0.7 1.5 2.3 2.2 6.1 86.3 14.7 4.9 6.1 5.6 3.9 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.5	0.8 1.6 2.4 7.8 78.8 12.1 5.3 6.0 5.3 3.9 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.4 1.1 0.8 0.0	0.8 1.7 2.5 2.7 10.7 60.5 10.2 5.7 6.0 4.9 3.8 3.5 3.2 2.9 2.6 2.3 2.0 1.7 1.4 1.1
Reach	Area	ID or		 Elevation (ft)	Time	Flow Rate (cfs)	Rate
Reach 4	4.219	Upstream	1.400	350.54	13.32	1142.6	270.84
Line Start Time (hr)			Values @ time (cfs)			100 hr (cfs)	
8.400 9.100 9.800 10.500 11.200 12.600 13.300 14.000 15.400 16.100 16.800 17.500 18.200 18.900 19.600 20.300	0.0 0.9 9.9 18.9 33.8 124.6 831.1 1141.9 830.4 480.8 340.2 263.1 210.9 180.4 159.8 144.1 129.3 115.1	0.6 1.5 10.9 20.5 39.0 179.1 881.9 1137.5 761.9 452.3 326.9 254.3 205.4 176.9 157.4 142.0 127.3 113.1	0.6 1.8 11.9 21.6 45.1 284.0 936.0 1114.7 699.0 427.6 314.5 245.9 200.4 173.5 155.0 139.7 125.3 111.1	0.7 2.0 12.9 22.5 52.1 449.5 993.0 1076.3 642.8 406.3 303.0 237.9 195.9 170.4 152.7 137.5 123.3 109.0	0.7 2.2 14.1 23.9 60.8 606.3 1048.5 1026.5 593.4 387.6 292.3 230.4 191.7 167.4 150.4 135.5 121.2 107.0	0.8 6.4 15.6 26.1 73.8 712.8 1095.5 967.5 550.6 370.6 282.1 223.4 187.7 164.7 148.3 133.4 119.2 104.9	0.8 8.6 17.1 29.5 93.3 779.1 1127.5 900.8 513.4 354.8 272.4 216.9 184.0 162.2 146.2 131.4 117.2 102.9
WinTR-20 Ve	ersion 3.2	0	Page 11			09/04/2020	13:12

Line Start Time			Values @ time				
(nr) 21.000		(CIS) 98.8	(cfs) 96.7	94.7	(CIS) 92.6		
21.700	86.4	83.8	81.8	79.7	77.6	75.6	73.5
22.400 23.100	71.4 56.5	69.3 54.3	67.3 52.2		63.1 48.0	61.0 45.5	58.8 43.4
23.800		39.0 24.0	30.7	50.1 34.6	48.0 32.5 18.4	30.5	
24.500 25.200		11.8	∠∠.⊥	20.3	7.9	16.6	
25.900	5.1	4.4	3.8	9.1 3.3	2.9	4.5	2.1
26.600 27.300		1.6	1.4	1.2	1.0	0.9	0.7
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area	ID or	Amount	Elevation	Time	Rate	Rate
Identifier	(sq m1)	Location	(in)	(IC)	(nr)	(CIS)	(csm)
Reach 4	4.219 I	Downstream	1.400	350.54	13.37	1142.4	270.78
Line					5 0		
Start Time (hr)			Values @ time (cfs)				
8.700	0.0	0.7	0.7	0.8	0.9	1.0	1.7
9.400	1.9	2.1	4.9 15.0	7.9	9.5	10.6 19.9	11.5 21.2
10.100		23.3				36.8	42.5
11.500	49.2		68.1 675.8			153.7 861.4	234.3
12.200							914.0
12.900 13.600		1027.0 1047.4			1138.1	1141.3 788.8	$1125.8 \\ 723.4$
14.300		612.4	992.0 567.0	527.6	858.5 493.3	463.3	437.1
15.000		394.8		360.9	345.9		319.4
15.700		296.5		276.2	266.8	257.8	249.2
16.400 17.100		233.3 193.4	226.1 189.3	219.4 185.4	213.2 181.8	207.5 178.2	202.4 174.9
17.100		168.6	165.8	163.2	160.7		156.0
18.500	153.6	151.3	149.1	147.0	144.9	142.9	
19.200		136.3		132.2	130.2	128.1	126.1
19.900 20.600	124.1 109.8	122.0 107.8	120.0 105.8	118.0 103.7	116.0 101.7	113.9 99.6	111.9 97.6
21.300		93.5				85.1	
22.000	80.5	78.5	76.4	74.3	72.2	70.2	68.1
22.700	66.0	63.9	61.8	59.7	57.4	55.2	53.0
23.400 24.100	50.9 35.4	48.8 33.3	46.7 31.3	44.2 29.1	42.2 26.8	39.9 24.8	37.6 22.8
24.100	21.0	19.2	17.4	15.6	13.9	12.4	10.9
25.500	9.6	8.3	7.2	6.3	5.4	4.7	4.1
26.200	3.5 1.3	3.0 1.1	2.6	2.3	2.0	1.7	1.5
26.900	1.3	1.1	0.9	0.8	0.0		

	, ,		, ,		5	1	
			Runoff			Flow	
			Amount				Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
D3 0	0 155		1 605		10 00	150 4	1020 46
DA 9	0.155		1.605		12.28	159.4	1030.46
Line							
Start Time		Flow	Values @ time	e increment	of O.	100 hr	
(hr)			(cfs)				
9.100		0.6	0.8		1.2		1.5
9.800			2.1	2.3	2.5		
10.500		3.1	2.8	2.6	2.6	3.1	3.7
11.200				7.4	9.0	12.2	17.5
11.900			84.1		157.8		93.3
12.600				27.7	22.8	19.3	16.5
13.300				8.5	8.7		10.8
14.000				11.2	11.1		10.9
14.700				10.4	10.2	9.5	8.6
15.400			7.5	7.3	7.2	7.1	7.1
16.100			6.8 6.3	6.8 6.2	6.7 6.1	6.6 6.1	6.5 6.0
16.800 17.500			5.8	5.7	5.6		5.4
18.200		5.3	5.2	5.1	5.0	5.0	4.9
18.900		0.0	J	4.6	4.5	4.4	4.3
19.600			4.1	4.0	3.9	3.8	3.7
20.300			3.5	3.4	3.3	3.2	3.2
21.000			2.9	2.8	2.7		
21.700				2.2	2.2	2.1	2.0
22.400			1.7		1.6		
23.100				1.1		0.9	
23.800			0.5	0.0			
Area or	Drainage	Rain Gage	Runoff Amount		Peak	Flow	
Reach	Area	ID or	Amount	Elevation	Time	Rate	Rate
Identifier	(sd mı)	Location	(in)	(It)	(nr)	(CIS)	(csm)
OUTLET	1 272		1.407		12 26	1155.2	264 15
OUILEI	4.373		1.407		13.30	1133.2	204.13
Line							
Start Time		Flow	Values @ time	e increment	of $0.$	100 hr	
(hr)			(cfs)				
			0.7				
9.400			6.2	9.4	11.2	12.5	13.6
10.100				19.3	21.2	23.0	24.0
10.800				31.8	36.5	42.2	48.9
11.500			80.2	102.0	137.1	198.6	318.4
12.200			805.3	849.1	878.4	910.1	949.7
12.900 13.600			1097.4 1001.9	1132.9 938.7	1152.3 869.6	1153.4 800.0	1135.8 734.6
14.300			578.0	538.5	504.1	473.9	447.6
15.000			386.7	369.5	353.9	339.8	326.8
15.700				283.3	273.8	264.7	
16.400			232.7	226.0	219.7	213.9	208.7
10.100	21,.0	210.0					200.7
WinTR-20 V	ersion 3.2	0	Page 13	3		09/04/202	20 13:12
			~				

Line Start Time (hr)	 (cfs)		Values @ time (cfs)	increment (cfs)	of 0.1 (cfs)	l00 hr (cfs)	
17.100 17.800 18.500 19.200 19.900 20.600 21.300 22.000 22.700 23.400 24.100 24.800 25.500 26.200	52.0 35.4 21.0 9.6 3.5	199.5 174.2 156.3 140.8 125.9 111.1 96.2 80.6 65.5 49.8 33.3 19.2 8.3 3.0	171.3 154.1 138.6 123.8 109.0 94.0 78.5 63.3 47.6 31.3	76.3 61.1 45.0 29.1 15.6 6.3 2.3	187.7 166.1 149.7 134.4 119.6 104.7 89.7 74.1 58.7 42.9 26.8 13.9 5.4 2.0 0.0	163.6 147.6 132.3 117.5 102.6 87.5 72.0 56.4 40.5 24.8 12.4	22.8 10.9 4.1
			S'	TORM 10_yr	_stm		
Reach	Area	ID or	Runoff Amount (in)	Elevation	Time	Rate	Rate
DA 1	3.519		2.693		13.21	2078.7	590.74
Line Start Time (hr)			Values @ time (cfs)				
8.400 9.100 9.800 10.500 11.200 11.900	5.8 19.7 43.1 79.1 114.9	7.3 22.3 47.6 84.7	90.1	1.7 10.8 28.1 57.3 95.3	2.5 12.8 31.4 62.5 100.3	35.0	4.5 17.3 38.9 73.5 109.9
12.600 13.300 14.000 14.700 15.400 16.100 16.800 17.500 18.200 18.900 19.600 20.300 21.000 21.700 22.400 23.100	221.3 1257.9 2052.5 1251.4 701.3 491.0 374.7 300.9 259.7 233.8 214.4 196.0 177.8 159.5 141.0 122.4 103.7	120.6 275.5 1489.8 1992.3 1138.7 658.3 471.4 361.4 293.8 255.0 230.9 211.8 193.4 175.1 156.9 138.4 119.8 101.0	358.1 1696.8 1904.6 1039.2	136.3 474.1 1864.1	147.7 623.3 1984.1 1663.5 877.3		186.9 1022.4 2077.4 1379.2 752.7 512.1 388.8 308.7 264.7 236.8 217.1 198.7 180.4 162.1 143.7 125.1 106.4 87.6

					-	-	
Line Start Time (hr)	 (cfs)		Values @ time (cfs)		of 0.100 (cfs)) hr (cfs)	(cfs)
23.800 24.500 25.200 25.900 26.600 27.300 28.000	84.9 63.8 33.5 12.5 4.5 1.6	1.4	79.5 55.7 25.8 9.4 3.4 1.2	76.7 51.2 22.4 8.1 2.9	73.8 46.7 19.4 7.0 2.5 0.9	70.7 42.1 16.7 6.1 2.2 0.7	
	Area	ID or		Elevation (ft)		Rate	Rate
DA 2	0.152		3.154		12.45	203.9	1345.33
Line Start Time (hr)	 (cfs)		Values @ time (cfs)		of 0.100 (cfs)		
6.600 7.300 8.000 8.700 9.400 10.100 10.800 11.500 12.200 12.900 13.600 14.300 15.000 15.700 16.400 17.100 17.800 19.200 19.900 20.600 21.300 22.700 23.400 24.100	0.0 1.3 2.3 3.4 5.1 7.7 8.9 15.9 127.7 97.0 25.7 18.1 17.2 13.3 11.8 10.9 10.1 9.3 8.4 7.6 6.7 5.9 5.0 4.1 3.3 2.4	2.4 3.6 5.6 8.0 8.6 18.5 173.5 78.0 21.9 18.0 17.0 12.9 11.7 10.8 10.0 9.1 8.3 7.4 6.6 5.7 4.9 4.0 3.1	0.6 1.6 2.6 3.7 6.0 8.4 8.6 22.3 200.6 63.2 19.7 17.9 16.6 11.5 10.7 9.9 9.0 8.2 7.3 6.5 5.6 4.7 3.9 3.0 1.8	0.7 1.7 2.8 3.9 6.4 8.7 9.2 28.6 200.6 52.1 18.6 17.8 15.9 12.4 11.4 10.6 9.7 8.9 8.1 7.2 6.3 5.5 4.6 3.8 2.9 1.3	0.9 1.8 2.9 4.1 6.8 9.0 10.3 38.8 180.9 43.5 18.2 17.7 15.2 12.2 11.3 10.5 9.6 8.8 7.9 7.1 6.2 5.4 4.5 3.6 2.8 1.0	1.0 2.0 3.1 4.3 7.1 9.2 11.9 55.7 150.7 36.5 18.2 17.5 14.4 12.1 11.2 10.3 9.5 8.7 7.8 7.0 6.1 5.2 4.4 3.5 2.6 0.6	4.2 3.4
Area or Reach Identifier	Area	Rain Gage ID or Location	Amount		Peak Fl Time (hr)	Rate	Rate
Reach 1	3.670	Upstream		372.15	13.19	2128.1	

Line					5 0	100 1	
Start Time			Values @ time				
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cis)	(cfs)	(cis)
			2 6			1 0	
6.600	0.0	0.5	0.6	0.7	0.9	1.0	1.1
7.300	1.3		1.6	1.7	1.9	2.7	3.3
8.000	4.0	4.9	6.0	7.3	8.7	10.4	12.2
8.700	14.2	16.4	18.7	21.2	23.8	26.6	29.8
9.400	33.2		41.0	45.3	49.8	54.7	59.8
10.100	65.1		76.3	82.1	88.1	93.9	99.3
			113.7	119.0	125.2	132.5	141.3
10.800	104.2		113.7	215.0			141.3
11.500	152.2	166.6		215.6	260.1	331.2	443.0
12.200	601.7		1006.6		1438.9	1640.5	1818.1
12.900	1961.2	2062.0	2115.6	2126.3	2095.9	2028.7	1935.2
13.600	1819.3	1685.4	1540.8	1398.0	1270.3	1156.8	1057.4
14.300	970.7	895.4	829.2	770.5	719.8	675.8	638.3
15.000	605.7	577.0	551.4	528.0	506 2	485 8	467.0
15.700	449.2	432.3	416.3	401.2	386.9	373.5	361.0
16.400	349.4	338.8	329.0	320.1	312.1	305.0	298.3
17.100	292.2	286.3	280.7	275.3	270.2	265.3	260.8
17.800	256.8		249.7	246.5	243.4	240.4	237.4
18.500	234.5	231.6	228.8	226.0	223.2	220.5	217.7
19.200	215.0	212.2	209.5	206.7	204.0	201.2	198.5
19.900	195.8	193.0	190.3	187.6	184.8	182.1	179.4
20.600	176.7	173.9	171.2	168.4	165.7	163.0	160.2
21.300	157.5	154.7	151.9	1 4 0 0	146.4	143.6	140.8
22.000	138.1		132.5	129.7	126.9		121.3
22.700	118.5	115.7	112.9	110.1	107.3	104.5	101.7
23.400	98.9		93.3	90.5	87.6	84.8	82.0
		75.9	72.4	68.7	64.7		
24.100	79.1	75.9				60.5	55.7
24.800	51.2		42.1	37.7	33.5	29.5	25.8
25.500	22.4		16.7		12.5	10.8	9.4
26.200	8.1	7.0	6.1	5.3	4.5	3.9	
26.900		2.5	2.2	1.9	4.5 1.6	1.4	1.2
27.600	1.0	0.9	0.7	0.6	0.0		
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
	Area			Elevation			Rate
Identifier				(ft)		(cfs)	
Idelicitiel	(BQ IIII)	LOCACION	(111)	(IC)	(111)	(CLS)	(CSIII)
D la 1	2 670 1	D	0 710	272 14	12 02	0104 6	F70 0C
Reach 1	3.6/0 1	Downstream	2.712	3/2.14	13.23	2124.6	5/8.86
Line							
Start Time		Flow	Values @ time			100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
6.800	0.4	0.7	0.8	0.9	1.0	1.2	1.3
7.500	1.5	1.6	1.7	2.1	2.8	3.5	4.3
8.200	5.2	6.4	7.7	9.2	10.9	12.8	14.8
8.900	17.1	19.4	21.9	24.6	27.5	30.8	34.3
9.600	38.1	42.2	46.6	51.2	56.2	61.3	66.7
10.300	72.3	78.0	83.9	89.8	95.5	100.7	105.5
11.000	110.2	115.2	120.8	127.2	134.9	144.3	156.2
11.700	172.0	194.5	227.2	278.3	360.2	486.0	658.6
12.400	860.5	1071.8	1287.1	1499.8	1696.0	1865.3	1994.3
WinTR-20 Ve	ersion 3 20	0	Page 16	5		09/04/201	20 13:12

WinTR-20 Version 3.20

Page 16

09/04/2020 13:12

Line Start Time				ime incremen			
(hr)	(cfs)	(cfs)	(CIS)	(cfs)	(CIS)	(CIS)	(CIS)
13.100 13.800 14.500 15.200 15.900 16.600 17.300 18.000 19.400 20.100 20.800 21.500 22.200 22.900 23.600 24.300 25.000	2080.0 1642.7 875.2 569.2 427.5 335.8 284.6 252.1 230.8 211.4 192.2 173.1 153.9 134.5 114.9 95.3 74.9 45.3 18.6	2120.6 1498.3 811.4 544.4 411.8 326.3 279.1 248.8 228.0 208.6 189.5 170.4 151.1 131.7 112.1 92.4 71.4 40.8 16.0	2119.0 1360.1 755.3 521.5 397.0 317.7 273.8 245.6 225.2 205.9 186.8 167.6 148.3 128.9 109.3 89.6 67.6 36.4 13.8	2078.8 1235.5 706.4 500.1 382.9 310.0 268.7 242.5 222.4 203.2 184.0 164.9 145.6 126.1 106.5 86.8 63.5 32.3 12.0	2003.6 1126.7 664.6 480.2 369.8 303.0 263.9 239.5 219.7 200.4 181.3 162.1 142.8 123.3 103.7 84.0 59.2 28.4 10.4	1903.1 1030.5 628.2 461.7 357.5 296.5 259.6 236.5 216.9 197.7 178.6 159.4 140.0 120.5 100.9 81.1 54.4 24.8 9.0	1781.1 947.3 596.8 444.1 346.2 290.4 255.7 233.6 214.1 195.0 175.8 156.6 137.2 117.7 98.1 78.1 49.9 21.5 7.8
26.400 27.100 27.800	6.7 2.4 0.8	2.1	5.0 1.8 0.0	4.4 1.5	3.8 1.3	3.2 1.1	2.8
			Runoff			Flow	
Reach Identifier	Area (sq mi)	ID or Location	Amount (in)	Elevation (ft)	Time (hr)	Rate (cfs)	Rate (csm)
DA 3	0.141		3.250		12.48	180.2	1281.10
Line							
Start Time				ime incremen			
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
6.500 7.200 7.900 8.600 9.300 10.000 11.400 12.100 12.800 14.200 14.900 15.600 16.300 17.700 18.400	0.115E-01 1.3 2.3 3.3 4.7 7.3 9.1 12.6 69.0 128.4 34.3 17.8 16.4 13.4 11.3 10.5 9.7 8.9	1.5 2.4 3.5 5.1	2.6 3.6	1 7	0.9 1.9 2.9 4.0 6.3 8.5 9.0 25.1 180.1 58.2 19.6 16.9 15.3 11.9 10.8 10.0 9.2 8.4	1.1 2.0 3.0 4.1 6.7 8.8 9.8 33.2 173.0 48.6 18.7 14.7 11.7 10.7 9.9 9.1 8.3	1.2 2.1 3.2 4.4 7.0 9.0 11.0 46.5 153.7 40.8 18.1 16.6 14.0 11.5 10.6 9.8 9.0 8.2
WinTR-20 Ve			Page	17	0.1	09/04/2020	
· • ·							

Line Start Time (hr)			Values @ time (cfs)				(cfs)
19.100 19.800 20.500 21.200 21.900 22.600 23.300 24.000 24.700	8.1 7.3 6.5 5.7 4.9 4.1 3.3 2.4 0.6	7.2 6.4 5.6 4.8 4.0 3.1 2.3	7.9 7.1 6.3 5.5 4.7 3.8 3.0 2.1	7.8 7.0 6.2 5.3 4.5 3.7 2.9	7.6 6.8 6.0 5.2 4.4 3.6 2.8	7.5 6.7 5.9 5.1 4.3 3.5 2.7	7.4 6.6 5.8 5.0 4.2 3.4 2.6 0.8
Area or							
Reach Identifier	Area (sq mi)	ID or Location		Elevation (ft)		Rate (cfs)	Rate (csm)
DA 4A	0.014		3.159		12.17	33.9	2411.76
Line Start Time (hr)			Values @ time (cfs)				(cfs)
8.900 9.600 10.300 11.000 11.700 12.400 13.100 13.800 14.500 15.200 15.900 16.600 17.300 18.000 18.700 19.400 20.100 20.800 21.500	0.0 0.8 1.0 1.2 4.7 14.4 2.6 1.7 1.7 1.3 1.1 1.1 0.9 0.8 0.7 0.7 0.6 0.0	0.8 1.0 1.4 6.6 9.9 2.3 1.8 1.7 1.2 1.1 1.0 0.9 0.8 0.7	0.6 0.9 1.1 1.7 9.9 7.1 2.0 1.8 1.6 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5	0.7 0.9 1.0 1.9 15.5 4.9 1.6 1.7 1.6 1.2 1.1 1.0 0.9 0.8 0.7 0.5	0.7 0.9 0.7 2.2 26.8 3.9 1.3 1.7 1.6 1.2 1.1 1.0 0.9 0.9 0.8 0.7 0.6 0.5	0.8 1.0 0.8 2.5 33.1 3.4 1.2 1.7 1.6 1.2 1.1 1.0 0.9 0.8 0.8 0.7 0.6 0.5	0.8 1.0 1.0 3.2 22.1 3.0 1.6 1.7 1.5 1.1 1.1 1.0 0.9 0.8 0.7 0.6 0.5
Area or Reach Identifier	Area	ID or	Amount	Elevation (ft)		Rate	Rate
DA 4B	0.094		3.347		12.28	169.9	1812.53

Line Start Time (hr)	 (cfs)	Flow (cfs)	Values @ tim	ne increment (cfs)	of 0.1 (cfs)	100 hr (cfs)	(cfs)
6.200 6.900 7.600 8.300 9.000 9.700 10.400 11.100 11.800 12.500 13.200 13.900 14.600 15.300 16.000 16.700 17.400 18.800 19.500 20.200 20.200 21.600 22.300 23.700 24.400	0.3 1.1 1.8 2.5 3.3 5.3 6.7 7.6 28.9 113.4 20.3 11.0 11.2 9.2 7.6 7.1 6.5 6.0 5.5 4.9 4.4 3.9 3.3 2.8 2.2	8.9 41.3 84.9 17.2 11.4 11.1 8.6 7.5 7.0 6.5 5.9 5.4 4.9 4.3 3.8 3.2 2.7	0.7 1.3 2.0 2.7 3.7 5.7 6.9 10.5 61.6 62.6 14.5 11.5 11.0 8.3 7.5 6.9 6.4 5.9 5.3 4.8 4.2 3.7 3.2 2.6 2.1 1.5	0.8 1.4 2.1 2.8 4.2 5.9 6.3 12.1 98.4 46.3 12.5 10.8 8.1 7.4 6.9 6.3 5.3 4.2 3.5 4.2 3.5 4.2	0.8 1.5 2.2 2.9 4.5 6.1 5.7 13.9 149.0 35.4 10.1 510.7 7.3 6.2 5.7 5.2 4.6 4.1 3.6 3.0 2.5 1.9	0.9 1.6 2.3 3.0 4.8 6.3 5.7 16.3 169.7 28.6 9.6 11.4 10.5 7.2 6.7 6.2 5.6 5.1 4.0 3.5 2.9 2.4 1.8 1.0	1.0 1.7 2.4 3.2 5.1 6.5 6.4 21.0 23.9 10.3 11.3 9.9 7.7 7.2 6.6 5.6 5.6 5.5 3.4 2.8 2.3 1.7 0.6
Area or Reach Identifier	Area	Rain Gage ID or Location	Amount	Elevation (ft)	Time	Flow Rate (cfs)	Rate
Reach 2	3.919	Upstream	2.748	366.86	13.20	2201.4	561.77
Line Start Time (hr)	(cfs)	Flow (cfs)	Values @ tim	ne increment (cfs)	of 0.1 (cfs)	100 hr (cfs)	(cfs)
6.200 6.900 7.600 8.300 9.000 9.700 10.400 11.100 11.800 12.500 13.200 13.900 14.600	0.0 2.7 5.2 11.7 27.2 54.6 94.2 133.2 255.1 1375.4 2201.4 1530.5 841.1	0.6 3.1 5.6 13.3 30.0 59.6 100.6 141.1 311.7 1552.1 2186.7 1391.6 784.7	0.7 3.4 6.3 15.1 33.4 64.8 106.6 150.6 402.2 1721.0 2135.7 1267.0 735.5	0.8 3.8 7.2 17.1 37.1 70.3 111.6 161.9 554.9 1874.8 2051.2 1157.6 693.4	1.4 4.1 8.1 19.2 41.1 76.0 116.2 175.2 175.2 170.6 2009.0 1943.1 1061.1 656.7	1.6 4.5 9.1 21.5 45.4 81.9 120.9 192.6 991.0 2112.0 1816.8 977.6 624.9	2.2 4.9 10.3 24.0 49.9 88.0 126.5 217.9 1193.9 2177.1 1676.0 905.1 596.2
WinTR-20 Ve	ersion 3.2	0	Page 1	.9		09/04/2020	13:12

Tino							
Line Start Time		Flow	Values @ time	increment	of 0.100) hr	
(hr)	(cfs)				(cfs)		
(/	(322)	(328)	(020)	(322)	(322)	(322)	(022)
15.300	570.1	545.9	523.5	502.8	483.6	465.5	448.4
16.000	432.4	417.2	403.0	389.5	377.1	365.5	355.0
16.700	345.2	336.4	328.5	321.3	314.6	308.3	302.3
17.400	296.6		285.8	280.8	276.3	272.2	268.4
18.100	264.9	261.5	258.2	255.0	251.9	248.8	245.7
18.800	242.7		236.7	233.8	230.8	227.8	224.9
19.500	221.9		216.1	213.1	210.2	207.3	204.3
20.200	201.4		195.5	192.6	189.6	186.7	183.8
20.900	180.8	177.9	174.9	172.0	169.0	166.1	162.6
21.600	159.6	156.7	153.7	150.7	147.8	144.8	141.8
22.300	138.9		132.9	129.9	126.9	123.9	120.9
23.000	117.9		111.9	108.9	105.9	102.9	99.9
23.700	96.9		90.9 64.3	87.8 59.7	84.7 54.4	81.2 49.9	77.3
24.400	72.8	08.7	04.3	59.7	24 0		45.3
25.100 25.800	40.8 16.0		32.2 12.0	28.3 10.4	24.8 9.0	21.5 7.8	18.6 6.7
26.500	5.8		4.3	3.8	3.2	2.8	2.4
27.200	2.1		1.5	1.3	J. Z	1.0	0.8
27.200	0.7		1.5	1.5	1.1	1.0	0.0
27.500	0.,	0.0					
Area or							
Reach	Area	ID or		Elevation		Rate	Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
Reach 2	3.919 1	Downstream	2.748	366.86	13.24	2200.7	561.59
Line							
Start Time			Values @ time				
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
6.400	0.0	0.6	1.2	1.6	1.9	2.6	3.0
7.100	3.3		4.0	4.4	4.8	5.1	5.5
7.100	6.0		7.8	8.8	10.0	11.3	12.9
8.500	14.6		18.6	20.9	23.3	26.4	29.2
9.200	32.4		40.0	44.2	48.6	53.3	58.2
9.900	63.3		74.4	80.2	86.2	92.5	98.8
10.600							
	105.0	110.3	114.9	119.5	124.9	131.2	138.8
11.300	105.0 147.9		114.9 171.3	119.5 187.2	124.9 210.1	131.2 243.4	138.8 294.0
11.300 12.000		158.6	171.3	187.2			
12.000 12.700	147.9 373.3 1674.8	158.6 505.7 1833.1	171.3 708.1 1973.3	187.2 930.4 2087.0	210.1 1138.9 2162.9	243.4	294.0 1503.9 2193.9
12.000 12.700 13.400	147.9 373.3 1674.8 2152.2	158.6 505.7 1833.1 2076.6	171.3 708.1 1973.3 1975.0	187.2 930.4 2087.0 1853.6	210.1 1138.9 2162.9 1716.4	243.4 1325.7 2197.6 1570.9	294.0 1503.9 2193.9 1429.1
12.000 12.700 13.400 14.100	147.9 373.3 1674.8 2152.2 1300.8	158.6 505.7 1833.1 2076.6 1187.1	171.3 708.1 1973.3 1975.0 1087.0	187.2 930.4 2087.0 1853.6 999.9	210.1 1138.9 2162.9 1716.4 924.4	243.4 1325.7 2197.6 1570.9 858.2	294.0 1503.9 2193.9 1429.1 799.8
12.000 12.700 13.400 14.100 14.800	147.9 373.3 1674.8 2152.2 1300.8 748.7	158.6 505.7 1833.1 2076.6 1187.1 704.7	171.3 708.1 1973.3 1975.0 1087.0 666.6	187.2 930.4 2087.0 1853.6 999.9 633.5	210.1 1138.9 2162.9 1716.4 924.4 603.9	243.4 1325.7 2197.6 1570.9 858.2 577.1	294.0 1503.9 2193.9 1429.1 799.8 552.5
12.000 12.700 13.400 14.100 14.800 15.500	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4
12.000 12.700 13.400 14.100 14.800 15.500 16.200	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6 287.3	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3 282.2	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4 277.5	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0 273.3	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0 269.5	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2 265.9	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6 262.4
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6 287.3 259.1	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3 282.2 255.9	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4 277.5 252.7	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0 273.3 249.6	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0 269.5 246.6	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2 265.9 243.5	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6 262.4 240.5
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6 287.3 259.1 237.6	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3 282.2 255.9 234.6	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4 277.5 252.7 231.6	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0 273.3 249.6 228.7	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0 269.5 246.6 225.7	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2 265.9 243.5 222.8	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6 262.4 240.5 219.8
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6 287.3 259.1 237.6 216.9	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3 282.2 255.9 234.6 213.9	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4 277.5 252.7 231.6 211.0	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0 273.3 249.6 228.7 208.1	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0 269.5 246.6 225.7 205.1	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2 265.9 243.5 222.8 202.2	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6 262.4 240.5 219.8 199.3
12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000	147.9 373.3 1674.8 2152.2 1300.8 748.7 529.6 406.9 330.6 287.3 259.1 237.6	158.6 505.7 1833.1 2076.6 1187.1 704.7 508.4 393.2 323.3 282.2 255.9 234.6	171.3 708.1 1973.3 1975.0 1087.0 666.6 488.8 380.5 316.4 277.5 252.7 231.6	187.2 930.4 2087.0 1853.6 999.9 633.5 470.4 368.7 310.0 273.3 249.6 228.7	210.1 1138.9 2162.9 1716.4 924.4 603.9 453.1 357.8 304.0 269.5 246.6 225.7	243.4 1325.7 2197.6 1570.9 858.2 577.1 436.8 347.8 298.2 265.9 243.5 222.8	294.0 1503.9 2193.9 1429.1 799.8 552.5 421.4 338.8 292.6 262.4 240.5 219.8

Line Start Time (hr)	 (cfs)	Flow (cfs)	Values @ time (cfs)	increment (cfs)	of 0.100 (cfs)	hr	(cfs)
21.100 21.800 22.500 23.200 23.900 24.600 25.300 26.000 27.400	175.8 154.5 133.7 112.8 91.7 65.6 33.4 12.5 4.5	172.8 151.6 130.7 109.8 88.7 61.1 29.4 10.8 3.9	169.9 148.6 127.7 106.8 85.6 55.8 25.7 9.4 3.4	166.9 145.6 124.8 103.7 82.2 51.1 22.4 8.1 2.9	163.4 142.7 121.8 100.7 78.4 46.6 19.4 7.0 2.5 0.9	160.5 139.7 118.8 97.7 74.0 42.1 16.7 6.1 2.2 0.7	157.5 136.7 115.8 94.7 69.9 37.6 14.4 5.2 1.9
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location		Elevation (ft)	Peak Fl Time (hr)	ow Rate (cfs)	Rate (csm)
DA 5	0.133		2.965		12.27	228.6	1721.07
Line Start Time (hr)	 (cfs)	Flow (cfs)	Values @ time (cfs)	increment (cfs)	of 0.100 (cfs)	hr (cfs)	(cfs)
7.100 7.800 8.500 9.200 9.900 10.600 11.300 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.700 20.400 21.100 21.800 22.500 23.200 23.900	0.5 1.3 2.2 3.5 5.7 7.2 12.1 82.7 71.8 18.0 15.4 14.6 10.9 10.0 9.3 8.6 7.9 7.2 6.4 5.7 5.0 4.2 3.5 2.8 2.0	0.6 1.4 2.4 4.0 6.0 6.5 14.1 137.4 52.8 14.9 15.4 14.5 10.7 9.9 8.5 7.1 6.3 5.6 4.9 4.1 3.4 2.7 1.9	0.7 1.6 2.5 4.4 6.2 5.9 16.3 210.0 41.1 12.5 15.3 14.3 10.5 9.8 9.1 8.4 7.7 7.0 6.2 5.5 4.8 4.0 3.3 2.5 1.7	0.9 1.7 2.6 4.7 6.5 6.2 19.4 224.4 33.9 12.6 15.2 14.0 10.4 9.7 9.0 8.3 7.6 6.9 6.1 5.4 4.7 3.9 3.2 2.4 1.2	1.0 1.8 2.8 4.9 6.7 7.2 26.0 182.6 28.8 14.0 15.1 13.1 10.3 9.6 8.9 8.2 7.5 6.8 6.0 5.3 4.6 3.8 3.1 2.3 0.7	1.1 2.0 2.9 5.2 7.0 8.6 36.7 134.2 24.7 14.9 12.0 10.2 9.5 8.8 8.1 7.4 6.6 5.9 5.2 4.5 3.7 3.0 2.2 0.0	1.2 2.1 3.1 5.5 7.2 10.3 53.8 98.8 21.2 15.3 14.8 11.3 10.1 9.4 8.7 8.0 7.3 6.5 5.8 5.1 4.3 3.6 2.9 2.1

			, ,		5	1	
			Runoff		Peak	Flow	
	Area (sq mi)		Amount (in)	Elevation (ft)		Rate (cfs)	Rate (csm)
DA 6A	0.047		3.337		12.41	70.6	1505.42
Line							
Start Time		Flow	Values @ ti	me increment	of 0.	100 hr	
(hr)				(cfs)			
6.900			0.6		0.7	0.7	0.8
7.600			0.9		1.0	1.1	1.1
8.300			1.3	1.3	1.4	1.4	1.5
9.000			1.7	1.9	2.0	2.2	2.3
9.700 10.400			2.7 3.3	2.8 3.3	2.9 3.1	3.0 3.0	3.1 3.0
11.100				5.1	5.9	6.8	8.3
11.800				32.4	48.7	64.4	
12.500				35.3	27.7	21.9	17.7
13.200			10.3	8.6	7.2	6.2	5.7
13.900			5.7	5.7	5.7	5.7	5.7
14.600				5.5	5.4	5.4	5.2
15.300				4.3	4.1	4.0	4.0
16.000 16.700			3.8 3.5	3.8 3.5	3.7 3.4	3.7 3.4	3.6 3.4
17.400			3.3	3.2	3.2	3.1	3.1
18.100			3.0	2.9	2.9	2.9	2.8
18.800	2.8	2.8	2.7	2.7	2.6	2.6	2.6
19.500			2.5	2.4	2.4	2.3	2.3
20.200			2.2	2.1	2.1	2.1	2.0
20.900			1.9	1.9	1.8	1.8	1.8
21.600 22.300			1.6 1.4	1.6 1.3	1.6 1.3	1.5 1.2	1.5 1.2
23.000				1.0	1.0	1.0	
23.700				0.8	0.7	0.6	0.5
24.400	0.0						
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach		ID or		Elevation		Rate	
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
DA 6B	0.014		4.130		12.13	47.7	3394.36
Line							
Start Time				me increment			
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
5.400			0.5	0.5	0.6	0.6	0.6
6.100			0.7	0.7	0.7	0.7	0.7
6.800			0.8	0.8	0.8	0.8	0.8
7.500 8.200			0.9 1.0	0.9 1.0	0.9 1.0	1.0 1.1	$\frac{1.0}{1.1}$
8.900			1.3	1.5	1.5	1.5	1.5
9.600			1.6	1.6	1.7	1.7	1.7
10.300			1.8	1.2	1.1	1.4	1.8
WinTR-20 V	ersion 3.2	0	Page	22		09/04/202	0 13:12

Line Start Time (hr)	 (cfs)		Values @ time (cfs)				
11.000 11.700 12.400 13.100 13.800 14.500 15.200 15.900 16.600 17.300 18.000 18.700 19.400 20.100 20.800 21.500	2.1 8.0 11.2 2.6 1.9 1.8 1.3 1.2 1.1 1.0 0.9 0.9 0.8 0.7 0.6	2.2 1.9 1.8 1.3 1.2 1.1 1.0 0.9 0.8 0.8	5.6 1.9 1.8 1.3 1.2 1.1 1.0 0.9 0.8 0.8	3.2 26.5 4.2 1.5 1.9 1.7 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6	3.6 45.0 3.8 1.1 1.9 1.7 1.2 1.2 1.1 1.0 0.9 0.8 0.7 0.6	0.6	6.0 17.1 3.0 1.9 1.8 1.4 1.2 1.1 1.0 0.9 0.8 0.7 0.6
			Amount	Elevation	Time	Rate	Rate
			(in) 2.766			(cfs) 2240.2	
Line Start Time (hr)			Values @ time (cfs)				
5.400 6.100 6.800 7.500 8.200 8.900 9.600 10.300 11.000 13.100 13.100 13.800 14.500 15.200 15.200 15.900 16.600 17.300 18.000 19.400 20.100 20.800 21.500	0.0 0.6 2.6 7.4 13.9 28.7 57.5 97.8 137.3 252.3 1402.9 2212.0 1738.1 947.0 623.5 468.6 372.2 317.3 281.7 257.7 235.8 214.1 192.5 170.2	7.9 15.5 32.0 62.6 104.4 145.7 302.3 1534.5 2239.0	0.7 4.3 8.5 17.2 35.2 67.9 111.1 155.8 379.1 1664.5 2229.2	1795.6 2182.0	0.6 1.3 5.7 10.3 21.2 43.4 79.2 121.2 181.4 720.3 1924.9 2101.3 1210.2 726.4 524.7 408.0 337.0 294.9 267.5 245.1 223.4 201.8 180.1 157.3	1.9 6.3 11.4 23.5 47.9 85.2 125.3 197.4 997.3 2045.4 1996.5	0.6 2.3 6.8 12.6 26.0 52.6 91.4 130.5 219.4 1236.1 2145.8 1874.4 1022.7 654.3 486.1 383.2 323.5 285.7 261.0 238.9 217.2 195.6 173.9 151.1

Line tart Time (hr)						00 hr (cfs)	(cfs)
22.200 22.900 23.600 24.300 25.000 25.700 26.400 27.100 27.800	104.0 79.5 46.5 19.3 7.0 2.5	122.9 100.8 74.0 42.0 16.7 6.1 2.2	141.7 119.7 97.7 69.8 37.6 14.4 5.2 1.9	33.4 12.4 4.5	135.4 113.4 91.3 61.0 29.4 10.8 3.9 1.4	110.3 88.0 55.8 25.7 9.3 3.4	107.1 84.0 51.1 22.3 8.1 2.9
Reach	Area	ID or	Amount	Elevation	Time	Rate	Rate
each 3	4.112	Downstream	2.766	353.51	13.30	2232.6	542.88
6.900 7.600 8.300 9.000 9.700 10.400 11.100 11.800 13.200 13.200 13.900 14.600 15.300 16.700 17.400 18.100 19.500 20.200 20.200 21.600 22.300 23.700 24.400 25.800 27.200	7.5 14.3 29.6 58.8 99.4 139.5 266.1 1429.9 2214.2 1701.2 931.8 616.9 464.6 369.8 315.8 280.8 257.0 235.0 213.4 191.7 169.5 147.2 125.3 103.2 77.8 45.4 18.7 6.8	8.1 15.9 32.7 63.9 106.1 148.3 323.5 1565.6 2232.6 1558.6 867.2 589.4 448.4 359.9 309.9 277.1 253.8 231.9 210.3 188.6 166.0 144.1 122.1 100.0 73.1 40.9 16.1 5.9	8.7 17.7 36.2 69.2 112.5 158.8 413.5 1696.4 2213.5 1421.9 810.2 564.3 433.0 350.9 304.3 273.5 250.6 228.8 207.2 185.5 162.8 140.9 119.0 96.9 68.8 36.6 13.9 5.1	19.7 40.2 74.8 117.7 171.2 564.1 1827.3 2158.5 1297.5 760.6 541.2 418.5 342.8 298.9 270.1 247.5 225.7 204.1 182.4 159.6 137.8 115.8 93.7 64.4 32.4 12.1 4.4	21.8 44.5 80.7 122.1 185.5 798.3 1954.0 2072.8 1187.0 717.7 520.0 405.0 335.4 293.7 266.7 244.4 222.7 201.0 179.3 156.5 134.7 112.7 90.5 59.7 28.5 10.5 3.8	11.7 24.2 49.1 86.7 126.6 203.2 1055.8 2068.8 1964.5 1089.9 680.3 500.3 392.3 328.5 289.0 263.4 241.3 219.6 197.9 176.2 153.4 131.5 109.5 87.0 54.7 24.9 9.1 3.3	12.9 26.7 53.8 93.0 132.3 228.4 1269.9 2158.6 1839.2 1005.4 647.1 481.9 380.6 322.0 284.8 260.2 238.1 216.5
	tart Time (hr) 22.200 22.900 23.600 24.300 25.700 26.400 27.100 27.800 rea or Reach dentifier each 3 Line tart Time (hr) 6.900 7.600 8.300 9.000 9.700 10.400 11.100 11.800 12.500 13.200 15.300	tart Time (hr) (cfs) 22.200	tart Time (hr) (cfs) (cfs) 22.200	tart Time (hr) (cfs) (cfs) (cfs) (cfs) 22.200	tart Time (hr) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) 22.200	tart Time (cfs) (c	tart Time (cfs) (c

7	.	D ' G			.	7 .	
Area or Reach	Drainage Area	ID or	Runoff	Elevation		Rate	Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)		
DA 7	0.030		3.519		12.24	63.4	2133.95
Line							
Start Time		Flow		me increment			
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
6.700	0.0	0.5	0.6	0.6	0.6	0.7	0.7
7.400			0.8	0.8	0.9	0.9	0.9
8.100	1.0		1.0	1.1	1.1	1.1	1.2
8.800	1.2	1.3	1.3	1.4	1.5	1.7	1.8
9.500	1.9	2.0	2.0	2.1	2.2	2.2	2.3
10.200	2.3		2.5	2.5	2.5	2.1	1.9
10.900	2.1		3.0	3.5	4.1	4.7	5.3
11.600	6.3		12.0	17.3	26.1	42.5	61.7
12.300	58.8	43.1	30.6	21.9	15.6	11.4	9.1
13.000	7.6	6.5	5.7	4.9	4.1	3.4	2.9
13.700	3.1	3.5	3.7	3.8	3.8	3.7	3.7
14.400	3.7	3.6	3.6	3.6	3.5	3.5	3.4
15.100	3.3	3.1	2.8	2.7	2.6	2.6	2.5
15.800	2.5	2.5	2.4	2.4	2.4	2.4	2.3
16.500	2.3	2.3	2.3	2.2	2.2	2.2	2.2
17.200	2.1		2.1	2.1	2.1	2.0	2.0
17.900	2.0	2.0	1.9	1.9	1.9	1.9	1.8
18.600	1.8	1.8	1.8	1.7	1.7	1.7	1.7
19.300	1.6		1.6	1.6	1.5	1.5	1.5
20.000		1.4	1.4	1.4	1.4	1.3	1.3
20.700	1.3	1.3	1.2	1.2	1.2	1.2	1.1
21.400	1.1	1.1	1.1	1.0	1.0	1.0	1.0
22.100			0.9	0.8	0.8	0.8	0.8
22.800	0.7	0.7	0.7	0.7	0.6	0.6	0.6
23.500	0.6	0.5	0.5	0.0			
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	_	ID or		Elevation	Time	Rate	Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
DA 8	0.077		3.445		12.32	138.1	1804.35
Line							
Start Time		Flow	Values @ ti	me increment	of $0.$	100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
6.000	0.0	0.5	0.6	0.7	0.7	0.8	0.9
6.700	1.0	1.0	1.1	1.2	1.3	1.4	1.4
7.400	1.5	1.6	1.7	1.8	1.9	1.9	2.0
8.100	2.1	2.2	2.3	2.4	2.5	2.6	2.7
8.800	2.8	2.8	2.9	3.1	3.3	3.7	4.0
9.500	4.3		4.7	4.8	5.0	5.2	5.3
10.200	5.5		5.8	6.0	6.0	5.6	5.1
10.900			6.4	7.5	8.8	10.2	11.7
11.600	13.7	17.4	23.6	33.5	49.5	78.1	117.7
WinTR-20 V	ersion 3.2	0	Page	25		09/04/20	20 13:12

Line		_	_				
Start Time (hr)				ime incremen (cfs)			
12.300 13.000 13.700 14.400 15.100 15.800 16.500 17.200 17.900 18.600 19.300 20.000 20.700 21.400 22.100 22.800 23.500 24.200	25.2 8.1 9.4 8.7 6.5 6.0 5.5 5.1 4.7 4.2 3.8 3.3 2.9 2.4 2.0 1.5	20.9 8.5 9.3 8.3 6.4 5.9 5.5 5.0 4.6 4.2 3.7 3.3 2.8 2.4 1.9	17.6 9.1 9.3 7.7 6.3 5.9 5.4 5.0 4.5 4.1 3.6 3.2 2.7 2.3 1.8	14.9 9.4 9.2 7.2 6.2 5.8 5.4 4.9 4.5 4.0 3.6 3.1 2.7 2.2 1.8	55.6 12.6 9.5 9.1 6.9 6.2 5.7 5.3 4.9 4.4 4.0 3.5 3.1 2.6 2.2 1.7	6.1 5.7 5.2 4.8 4.3 3.9 3.5 3.0	31.5 8.8 9.5 8.9 6.6 6.0 5.6 5.2 4.7 4.3 3.8 3.4 2.9 2.5 2.0 1.6
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	 Elevation (ft)	Time	Flow Rate (cfs)	Rate
Reach 4	4.219	Upstream	2.783	351.49	13.29	2252.6	533.94
Line Start Time (hr)				ime incremen (cfs)			
6.000 6.700 7.400 8.100 8.800 9.500 10.200 11.600 12.300 13.000 13.700 14.400 15.100 15.800 17.200 17.200 17.900 18.600 19.300 20.000	1.0 8.6 14.8 28.1 55.2 94.5 133.7 223.2 1252.5 2101.6 1975.7 1103.1 692.4 509.3 400.6 336.2 296.1 269.9 247.1 224.8	1.6 9.3 16.1 30.8 60.3 101.0 140.3 254.4 1439.0 2186.1 1851.2 1018.4 658.5 490.8 388.8 329.6 291.7 266.5 243.9 221.6	1.7 10.0 17.7 33.8 65.5 107.7 148.9 301.6 1559.2 2237.5 1714.0 944.7 627.5 473.4 377.9 323.4 287.7 263.2 240.7	10.7 19.4 37.2 70.8 114.5 159.4 374.2 1662.0	6.2 11.4 21.3 41.1 76.4 120.9 171.8 489.1 1767.6	186.1 684.6	0.9 8.0 13.5 25.7 50.3 88.3 129.1 202.5 977.5 1994.6 2084.5 1200.3 730.0 529.1 413.3 343.1 300.9 273.3 250.3 228.0 205.7 183.4
WinTR-20 V	ersion 3.2		Page	26		09/04/2020	

	Lac (dd).	37.1713 10	on (aa). 77.2		MOITE GOINE.	Ly Courty	
Line							
			Values @ time				
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
21.400	180.2	176 8	173.3	169.7	166 4	163.2	160.0
22.100	156.8	153.6	150.4	147.1	143.9	140.7	137.5
22.800			127.8		121.3		114.8
23.500	111.6	108 4	105 1	101.4	98.1	94.9 64.4	91.6
24.200		83.3	77.8	73.1	68.8	64.4	59.7
24.900	54.7	50.0	45.4	40.9	36.6	32.4	28.5
25.600	24.9 9.1	Z1.6	45.4 18.7 6.8	16.1	13.9	12.1	10.5
27.000		2.8	2.4	2.1	1 8	1.5	3.0 1 3
	1.1	1.0	0.8		1.0	1.3	1.5
7x02 0x	Drainago	Pain Cago	Dunoff		Dools	Flow	
Reach	Area	ID or	Runoff Amount	Elevation	Time	Rate	Rate
Identifier	(sq mi)	Location	Amount (in)	(ft)	(hr)	(cfs)	(csm)
Reach 4	4.219	Downstream	2.783	351.49	13.33	2251.8	533.77
Line							
Start Time		Flow	Values @ time	e incremen	t of 0.	100 hr	
(hr)	(cis)	(cis)	(cfs)	(cis)	(cis)	(cis)	(cis)
6.600	0.0	0.9	1.5 9.0	1.6	3.7	5.8	6.8
7.300	7.7	8.4	9.0	9.7	10.4	11.1	11.9
8.000	13.0	14.2	15.5	17.0		20.4	22.5
8.700 9.400		27.1 53.2	29.7 58.2	63.3	35.7 68.6	39.4 74.0	43.6 79.7 123.7
10.100	85.7	91.9	98.3	104.9	111.7	118.4	123.7
10.800			137.3	145.1	154.8	166.4	
11.500	195.4	213.7	239 9	2.79 .7	340.5	434.9	591.1
12.200		1144.9	1369.6	1512.8		1722.6	
12.900 13.600		2058.1	2153.4 1905.0 1052.8	2219.6	2249.9	2243.3 1491.4	2200.1 1361.6
14 300	1245.3	1142 6	1905.0 1052.8	974 7	906 3	846.1	793.3
15.000		707.7	672.4	640.2	610.9	584.3	560.1
15.700	537.9 419.0	517.5	498.4 393.7	480.6	463 8	448 0	433.0
		405.9	393.7	382.4	372.0	362.5	354.0
17.100		339.1	332.3 293.5 267.9	326.0 289.4 264.6	319.9	314.0	308.4
17.800	303.1 274.7	298.1 271 3	493.5 267 9	289.4 264 6	285.5 261 4	281.8 258.1	278.2 254.9
19.200	251.7	248.5	245.2	242.0	238.9	235.7	232.5
19.900	229.3		222.9	219.8	216.6	213.4	210.2
20.600	207.0	203.9	200.7	197.5	194.3	191.1	187.9
21.300	184.7		178.3	174.8	171.2	167.8	164.5
22.000	161.3		154.9	151.7	148.5	145.3	142.0
22.700 23.400	138.8 116.2		132.4 109.7	129.1 106.5	125.9 103.2	122.7 99.5	119.5 96.3
24.100	93.0		85.3	80.0	75.0	70.6	66.3
24.800	61.7	56.7	51.9	47.4	42.8	38.4	34.1
25.500	30.1	26.4	23.0	19.9	17.2	14.8	12.8
26.200	11.1		8.3	7.2	6.2	5.4	4.7
26.900	4.0	3.5	3.0	2.6	2.2	1.9	1.6

Line Start Time (hr)	 (cfs)			ime increment (cfs)			
27.600	1.4	1.2	1.0	0.9	0.0		
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	Elevation (ft)		Flow Rate (cfs)	Rate
DA 9	0.155		3.059		12.28	270.1	1746.26
Line Start Time (hr)				ime increment (cfs)			
6.700 7.400 8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.700 14.400 15.100 15.800 16.500 17.200 17.900 18.600 19.300 20.000 20.700 21.400 22.100 22.800 23.500 24.200	0.0 1.4 2.4 3.5 6.0 8.2 7.7 23.7 267.1 41.2 14.9 18.0 16.6 12.3 11.4 10.6 9.8 9.0 8.1 7.2 6.4 5.5 4.6 3.8 2.9 1.5	1.5 2.5 3.7 6.4 8.5 8.9 31.5 221.1 34.8 16.4 17.8 15.5 12.2 11.3 10.5 9.7 8.8 8.0 7.1 6.3 5.4 4.5 3.6 2.8	0.7 1.6 2.7 3.8 6.7 8.8 10.7 44.2 163.5 29.7 17.6 17.7 14.3 12.0 11.2 10.4 9.5 8.7 7.9 7.0 6.1 5.3 4.4 3.5 2.6 0.0	0.8 1.8 2.9 4.1 7.0 9.1 12.7 64.4 120.7 25.5 18.1 17.5 13.4 11.9 11.1 10.3 9.4 8.6 7.7 6.9 6.0 5.1 4.3 3.4 2.5	0.9 1.9 3.0 4.6 7.3 9.1 14.9 98.1 88.0 21.7 18.2 17.3 13.0 11.8 11.0 10.2 9.3 8.5 7.6 6.7 5.9 4.1 3.3 2.4	1.1 2.1 3.2 5.2 7.6 8.2 17.4 161.3 64.7 18.0 18.2 17.1 12.7 11.7 10.9 10.0 9.2 8.3 7.5 6.6 5.8 4.9 4.0 3.1 2.3	1.2 2.2 3.3 5.7 7.9 7.4 20.0 245.8 50.2 15.1 18.1 16.9 12.5 11.6 10.7 9.1 8.2 7.4 6.5 5.6 4.8 3.9 3.0 2.0
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)		Peak Time (hr)	Flow Rate (cfs)	Rate
OUTLET	4.373		2.793		13.32	2276.3	520.48
Line Start Time (hr)		Flow (cfs)		ime increment (cfs)		100 hr (cfs)	
6.600 7.300				2.3 11.3	4.5 12.2	6.7 13.0	7.9 14.0
WinTR-20 Ve	ersion 3.20	0	Page	28		09/04/2020	13:12

Line Start Time		Flow	Values @ ti	me incremen	t of O	100 hr	
(hr)		(cfs)			(cfs)		(cfs)
8.000 8.700 9.400 10.100 10.800 11.500 12.200 12.900 13.600 14.300 15.700 16.400 17.100 17.800 19.200 19.900 20.600 21.300 22.000 22.700 23.400 24.100 24.800 25.500 26.200 26.900 27.600	1263.4 764.4 550.3 430.6 357.0 313.0 283.8 259.9 236.7 213.5 190.4 166.1 142.7 119.2 95.0 61.7 30.1 11.1	16.6 30.6 59.2 100.1 139.3 237.5 1412.0 2099.3 2038.0 1160.5 724.3 529.8 417.3 349.7 307.9 280.3 256.5 233.4 210.2 187.0 162.8 139.4 115.9 90.9 56.7 26.4 9.6 3.5	106.8 146.2 271.4 1590.7 2188.2 1921.4 1070.6 687.9 510.6 405.0 342.8 303.2 276.8 253.2 230.1 206.9 183.6 159.4 136.0 112.5 86.2 51.9 23.0			23.5 43.9 81.3 127.5 181.3 533.1 1810.6 2265.0 1509.7 863.4 597.2 459.8 373.5 324.2 291.1 266.6 243.3 220.1 197.0 172.8 149.4 126.0 101.9 70.6 38.4 14.8 5.4	25.7 48.8 87.3 131.9 197.2 752.4 1897.0 2218.1 1379.8 810.4 572.7 444.7 364.8 318.4 287.4 263.2 240.0 216.8 193.7 169.4 146.1 122.6 98.5 66.3 34.1 12.8 4.7
				STORM 100_	_		
Area or Reach Identifier	Area	ID or	Runoff Amount (in)	Elevation (ft)	Time		Rate
DA 1	3.519		5.850		13.14	3948.0	1121.98
Line Start Time (hr)	 (cfs)	Flow (cfs)	Values @ ti (cfs)	me incremen (cfs)	t of 0. (cfs)	100 hr (cfs)	(cfs)
5.800 6.500 7.200 7.900 8.600 9.300 10.000	0.403E-01 8.7 34.5 73.1 119.3 170.3 225.6 300.7 389.7	0.7 11.3 39.4 79.3 126.3 177.9 234.5 313.5 400.0	1.3 14.3 44.5 85.7 133.4 185.5 244.0 326.4 409.5	2.1 17.7 49.9 92.2 140.6 193.2 254.0 339.5 418.4	3.2 21.4 55.4 98.8 147.9 201.0 264.8 352.7 427.0	4.7 25.5 61.2 105.5 155.3 208.9 276.2 365.8 436.1	6.5 29.8 67.1 112.3 162.8 217.1 288.3 378.3 447.4
WinTR-20 V	ersion 3.20	J	Page	29		09/04/202	2U 13:12

Line			TT 1 0 1	, ,		100 1	
Start Time (hr)	(cfs)	(cfs)	(cfs)	ime incremen (cfs)		(cfs)	
11.400 12.100 12.800 13.500 14.200 14.900 15.600 16.300 17.700 18.400 19.100 19.800 20.500 21.200 21.200 21.200 22.600 23.300 24.000 24.700 25.400 26.100 26.800 27.500 28.200	463.6 991.7 3371.5 3613.0 2018.4 1214.4 896.5 713.9 606.3 537.7 492.2 452.7 413.9 375.1 336.4 297.4 258.3 219.0 179.6 127.9 59.8 21.8 7.9 2.7 0.9	486.5 1227.6 3643.8 3409.3 1851.7 1151.1 865.0 694.3 595.1 530.2 486.4 447.1 408.3 369.6 330.8 291.8 252.7 213.4 173.7 118.0 52.1 18.9 6.8 2.3 0.7	1514.4 3824.5 3167.7 1706.6 1096.3 835.4 676.3 584.5 523.2 480.7 441.6 402.8 364.1 325.2 286.2 247.1 207.8 167.5 107.7 45.1 16.4 5.9 2.0	1850.2 3920.8 2906.3 1581.0 1048.4 807.7 659.6 574.3 516.6 475.0 436.0 397.3 358.5 319.7 280.7 241.5 202.1 160.9 97.4 38.9 14.2	623.0 2227.5 3942.9 2652.6 1468.9 1005.9 782.0 644.1 564.4 510.2 469.4 430.5 391.7 353.0 314.1 275.1 235.9 196.5 153.8 87.3 33.5 12.2 4.3	966.2 757.7 630.5 555.0 504.1 463.8 424.9 386.2 347.4 308.5 269.5	823.4 3022.8 3776.2 2207.7 1287.3 930.0 735.0 618.0 546.1 498.1 458.3 419.4 380.7 341.9 303.0 263.9 224.6 185.3 137.3 68.3 25.1 9.1 3.2
Area or	Drainage Area	Rain Gage ID or	Runoff Amount	 Elevation	n Time		 Rate (csm)
DA 2	0.152		6.443		12.43	333.4	2199.78
Line Start Time (hr)	(cfs)			ime incremen			(cfs)
4.300 5.000 5.700 6.400 7.100 7.800 8.500 9.200 9.900 10.600 11.300 12.000 12.700 13.400 14.100	0.0 2.1 4.1 6.4 8.8 11.3 13.9 16.7 22.2 25.7 32.0 122.4 254.5 70.7 34.5	0.6 2.3 4.4 6.7 9.2 11.7 14.2 17.4 22.8 25.3 37.2 167.9 209.9 59.4 34.5	4.8		1.3 3.2 5.4 7.8 10.2 12.8 15.3 20.2 24.4 23.0 58.7 329.7 117.6 37.4 34.0	1.5 3.5 5.7 8.1 10.6 13.1 15.7 20.9 24.9 24.5 72.1 328.9 98.8 35.2 33.8	1.8 3.8 6.1 8.5 11.0 13.5 16.1 21.6 25.4 27.6 92.4 299.6 83.5 34.5 33.5
WinTR-20 Ve	ersion 3.20)	Page	30		09/04/2020	0 13:12

Line Start Time		Flow	Values @ time	ingroment	of O	100 hr	
(hr)			(cfs)		(cfs)		
14.800 15.500 16.200 16.900 17.600 18.300 19.000 19.700 20.400 21.100 21.800 22.500 23.200 23.900 24.600	33.2 28.7 25.1 23.2 21.5 19.8 18.1 16.4 14.7 12.9 11.2 9.4 7.7 5.9 1.5	12.7 10.9 9.2 7.4	12.4 10.7 8.9 7.2	32.3 26.5 24.2 22.5 20.8 19.1 17.4 15.6 13.9 12.2 10.4 8.7 6.9 4.8 0.0	31.7 26.1 24.0 22.3 20.6 18.9 17.1 15.4 13.7 11.9 10.2 8.4 6.7 4.0	18.6 16.9 15.1 13.4 11.7 9.9	29.7 25.4 23.5 21.8 20.1 18.4 16.6 14.9 13.2 11.4 9.7 7.9 6.2 2.2
Area or Reach	Drainage Area	Rain Gage ID or		 Elevation		Flow Rate	 Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
Reach 1	3.670	Upstream	5.875	373.29	13.13	4054.5	1104.68
Line Start Time (hr)			Values @ time (cfs)				
4.300 5.000 5.700 6.400 7.100 7.800 8.500 9.200 10.600 11.300 12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.700 20.400 21.100	948.7 3277.0	13.2 41.2 82.3 131.0 184.5 243.1 323.6 414.9	3.3 16.1 46.4 88.9 138.3 192.5 252.9 336.8 424.1 529.4 1458.4 3809.0 3456.2 1886.0	1808.8 3966.2 3209.7 1742.3 1129.0	1.3 5.3 23.1 57.6 102.4 153.4 208.6 274.2 364.0 421.0 2180.0 4038.5 2943.9 1615.4 1083.8 6896.5 537.2 493.9 453.1 412.7 372.2 331.6	109.4 161.1 216.7 285.7 377.6 451.4 695.1 2556.4 4041.6	1.8 8.5 31.5 69.6 116.5 168.8 225.0 297.9 391.2 463.7 7928.1 3975.3 2453.4 1404.9 995.9 783.0 654.0 576.8 524.2 482.2 441.6 401.1 360.6 320.0

Line	245 (44)	07,1710 1	311 (334) , , , , ,	112	.0110900	21	
Start Time	(cfs)		Values @ time (cfs)		of 0. (cfs)		
21.800 22.500 23.200 23.900 24.600 25.300 26.000 26.700 27.400	314.1 273.3 232.3 191.2 138.8 68.3 25.1 9.1	267.5 226.4 185.2 128.9 59.8 21.8 7.9	220.6 179.1 118.6 52.1 18.9 6.8	255.8 214.7 172.4 107.7 45.1 16.4	249.9 208.8 165.0 97.4 38.9	244.0 202.9 156.9 87.2 33.5 12.2	279.1 238.2 197.1 148.2 77.5 29.0 10.6 3.7 1.2
28.100	1.0			0.6	0.0		
Identifier	(sq mi)	Location	Runoff Amount (in)	(ft)	(hr)	(cfs)	(csm)
Reach 1	3.670	Downstream	5.875	373.29	13.21	4049.9	1103.43
Line Start Time (hr)			Values @ time (cfs)				
4.500 5.200 5.900 6.600 7.300 8.000 8.700 9.400 10.100 10.800 11.500 12.200 12.900 13.600 14.300 15.700 16.400 17.100 17.800 19.200 19.900 20.600 21.300 22.700 23.400 24.100 24.800	14.2 43.1 84.6 133.6 187.4 246.5 328.3 418.3 510.8 1266.5 3664.4 3596.1 1991.8 1223.8 912.5 731.3	3.7 17.2 48.4 91.3 141.0 195.3 256.6 341.7 427.2 542.2 1579.6 3870.6 3368.9 1833.9 1163.7 881.1 712.2 613.9 548.6 503.6 462.7 422.1 381.7 325.7 325.7	4.6 20.7 54.0 98.0 148.5 203.4 267.2 355.2 435.6 585.2 1940.1 3996.9 3115.0 1695.8 1111.2 851.7 694.4	24.5 59.7 104.9 156.2 211.5 278.3 368.9 444.8 644.8 2313.5 4047.1 2850.9 1574.2 1064.5 824.4 677.9	28.7 65.7 111.9 163.8 219.7 290.1 382.5 455.6 729.5 2690.4 4027.1 2601.0 1466.0 1021.8 798.8	9.3 33.2 71.8 119.0 171.6 228.1 302.4 395.8 469.2 848.8 3057.2 3933.9 2375.5 1373.1 982.2 774.7 649.4	11.5 38.0 78.2 126.3 179.5 237.1 315.2 408.0 487.1 1021.0 3388.5 3787.3 2172.0 1293.2 946.1 752.3 636.9

Line Start Time (hr)	 (cfs)		Values @ time (cfs)	increment (cfs)		hr (cfs)	(cfs)
25.500 26.200 26.900 27.600 28.300	57.0 20.7 7.5 2.6 0.8	49.5 18.0 6.5 2.2 0.7	42.8 15.5 5.6 1.9 0.0	36.9 13.4 4.8 1.6	31.9 11.6 4.1 1.4	27.6 10.0 3.5 1.2	23.9 8.7 3.0 1.0
Area or	Drainage	Rain Gage				ow	
Reach Identifier	Area (sq mi)	ID or Location		Elevation (ft)	Time (hr)	Rate (cfs)	Rate (csm)
DA 3	0.141		6.562		12.50	294.5	2093.88
Line Start Time (hr)	 (cfs)		Values @ time (cfs)		of 0.100 (cfs)	hr	(cfs)
4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 16.100 16.800 17.500 18.200 18.900 19.600 20.300 21.700 22.400 23.100 23.800 24.500	0.0 2.0 3.9 6.1 8.3 10.7 13.1 15.5 20.5 24.1 25.2 78.0 283.4 90.7 34.9 31.5 28.3 24.0 22.1 120.5 18.9 17.3 15.7 14.1 10.8 9.2 7.6 5.9 2.6	0.6 2.3 4.2 6.4 8.7 11.0 13.4 15.9 21.1 24.4 28.6 101.8 254.9 77.0 33.9 31.2 27.4 23.6 21.9 20.3 18.7 17.1 15.4 13.8 12.2 10.6 9.0 7.3 5.7	0.8 2.5 4.5 6.7 9.0 11.4 13.7 16.6 21.6 24.3 32.9 137.7 217.4 65.2 33.4 31.0 26.5 23.4 21.6 20.0 18.4 16.8 15.2 13.6 12.0 10.4 8.7 7.1 5.5 1.3	1.0 2.8 4.8 7.0 9.3 11.7 14.1 17.4 22.2 23.5 37.9 186.3 182.0 54.9 32.9 30.7 25.8 23.1 21.4 19.8 18.2 16.6 15.0 13.4 11.7 10.1 8.5 6.9 5.2 0.9	1.3 3.1 5.2 7.4 9.7 12.0 14.4 18.2 22.7 22.6 43.8 240.0 152.0 46.6 32.5 30.3 25.2 22.8 21.2 19.6 18.0 16.4 14.8 13.1 11.5 9.9 8.3 6.6 4.8 0.7	1.5 3.4 5.5 7.7 10.0 12.4 14.8 19.0 23.2 22.3 51.2 280.4 127.3 40.5 32.1 29.9 24.7 22.6 20.9 19.3 17.7 16.1 14.5 12.9 11.3 9.6 8.0 6.4 4.2 0.0	1.7 3.7 5.8 8.0 10.4 12.7 15.1 19.8 23.7 23.1 62.0 294.3 107.1 36.9 31.8 29.2 24.3 22.3 20.7 19.1 17.5 15.9 14.3 12.7 11.0 9.4 7.8 6.2 3.4

Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area				Time	Rate	Rate
Identifier	(sq mi)	Location			(hr)	(cfs)	(csm)
DA 4A	0.014		6.617		12.17	50.7	3605.55
Line							
Start Time		Flow	Values @ time	e increment	of 0.	100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
5.300		0.5	0.6	0.6	0.6	0.7	0.7
6.000			0.8	0.8	0.8	0.9	0.9
6.700		1.0	1.0	1.1	1.1	1.1	1.2
7.400	1.2	1.2	1.3	1.3	1.3	1.4	1.4
8.100	1.4	1.5	1.5	1.5	1.6	1.6	1.6
8.800	1.7	1.7	1.7	1.8	2.0	2.1	2.2
9.500	2.2	2.3	2.3	2.4	2.4	2.5	2.5
10.200	2.6	2.6	2.6	2.7	2.4	1.8	1.9
10.900	2.4	3.0	3.6	4.3	5.0	5.7	6.4
11.600	7.8	10.5	14.3	19.5	26.6	41.0	49.5
12.300		24.4	17.6	13.0	9.5	7.9	6.9
13.000			4.6	3.8	3.1	2.3	2.2
13.700			3.3	3.3	3.2	3.2	3.2
14.400			3.1	3.1	3.0	3.0	3.0
15.100		2.6	2.5	2.5	2.4	2.4	2.4
15.800			2.3	2.3	2.3	2.2	2.2
16.500		2.2	2.1	2.1	2.1	2.1	2.1
17.200		2.0	2.0	2.0	1.9	1.9	1.9
17.900			1.8	1.8	1.8	1.8	1.7
18.600			1.7	1.6	1.6	1.6	1.6
19.300		1.5	1.5	1.5	1.5	1.4	1.4
20.000			1.3	1.3	1.3	1.3	1.2
20.700		1.2	1.2	1.2	1.1	1.1	1.1
21.400			1.0	1.0	1.0	0.9	0.9
22.100			0.8	0.8	0.8	0.8	0.8
22.800			0.7	0.7	0.6	0.6	0.6
23.500		0.5	0.5	0.0	0.0	0.0	0.0
23.300	0.0	0.5	0.5	0.0			
Area or	Drainage	Rain Gage	Runoff		Deak	Flow	
Reach		ID or		Elevation			Rate
Identifier	(sa mi)	Location	(in)	(ft)			(csm)
Identifici	(69 1111)	посастоп	(±11 /	(10)	(111)	(CID)	(CDIII)
DA 4B	0.094		6.681		12.30	262.1	2796.13
211 12	0.051		0.001			20212	2,,,,,,
Line							
Start Time		Flow	Values @ time	e increment	of 0	100 hr	
(hr)			(cfs)	(cfs)	(cfs)	(cfs)	
(111)	(CIB)	(CIB)	(CIB)	(CLS)	(CIB)	(CIS)	(CIB)
3.900	0.0	0.6	0.7	0.9	1.1	1.3	1.4
4.600		1.8	2.0	2.2	2.4	2.6	2.8
5.300		3.2	3.4	3.6	3.8	4.0	4.2
6.000			4.9	5.1	5.3	5.5	5.8
6.700			6.4	6.7	6.9	7.1	7.3
7.400			8.0	8.2	8.5	8.7	8.9
8.100		9.4	9.6	9.8	10.1	10.3	10.5
0.100	9.4	9.4	۶.0	٠.٥	TO.T	10.3	10.5
WinTR-20 V	ersion 3 2	0	Page 3	4		09/04/2020	13:12
M TITITIO 0	CIBIOII 3.4	0	raye 3	1		07/04/2020	, 10.14

Line							
			Values @ time				
(III')	(CIS)		(cfs)	(CIS)	(CIS)	(CIS)	(CIS)
8.800		11.0	11.2		12.1	13.0	
10.200	14.2 16.6	14.6 16.9	15.0 17.2	15.3 17.5	15.7		16.3 13.9
10.200	13.9	15.9	19.0	22.6	26.7	15.7 31.0	
11.600		50.2	65.4	88.0	119.4	168.8	234.8
12.300			184.9		109.8	84.4	67.1
13.000	55 5	47 1	40 2	34.1	28.6	23.4	
13.700		19.0	20.5			21.4	
14.400	21.2	21.1	20.9	20.7	20.5 16.7		
15.100	19.8 16.0	15.0	18.0 15.6	17.2	16.7 15.3	15.2	15.0
16.500	14.9	14.7			14.2	14.1	13.9
17.200		13.6 12.6	13.5 12.4	13.3	13.2	12 0	12 0
17.900		12.6	12.4	12.3	12.1		11.8
18.600	11.6	11.5	11.3	11.2	11.0	10.9	10.7
19.300 20.000		10.4	10.2	10.1 9.0	9.9 8.8	9.8	9.6 8.5
20.700	8.4	8.2	10.2 9.2 8.1	7.9	7.8	7.6	7.4
21.400		7.1		6.8			
22.100	6.2	6.0	7.0 5.9	5.7	5.6	6.5 5.4	5.3
22.800	5.1	5.0	4.8		4.5	4.3	
23.500 24.200	4.0	1.4	3.7 0.7	0.0	3.4	3.2	3.0
24.200	2.5	1.4	0.7	0.0			
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Area or Reach	Drainage Area	Rain Gage ID or	Runoff Amount	Elevation	Peak Time	Flow Rate	Rate
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	Elevation (ft)	Peak Time (hr)	Rate (cfs)	Rate (csm)
Reach Identifier	(sq mi)	Location	Runoff Amount (in) 5.921	(ft)	(hr)	(cfs)	(csm)
Reach Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
Reach Identifier Reach 2 Line Start Time	Area (sq mi) 3.919	Location Upstream	Amount (in) 5.921 Values @ time	(ft) 368.21 e increment	(hr) 13.17 of 0.	(cfs) 4199.6	1071.67
Reach Identifier Reach 2 Line Start Time	Area (sq mi) 3.919	Location Upstream	Amount (in) 5.921	(ft) 368.21 e increment	(hr) 13.17 of 0.	(cfs) 4199.6	1071.67
Reach Identifier Reach 2 Line Start Time (hr)	Area (sq mi) 3.919(cfs)	Location Upstream Flow (cfs)	Amount (in) 5.921 Values @ time (cfs)	e increment (cfs)	(hr) 13.17 of 0. (cfs)	(cfs) 4199.6 100 hr (cfs)	(csm) 1071.67 (cfs)
Reach Identifier Reach 2 Line Start Time	Area (sq mi) 3.919(cfs) 0.0 3.7	Location Upstream Flow (cfs) 0.6 4.4	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1	e increment (cfs) 0.9 5.8	of 0. (cfs) 1.7 6.5	(cfs) 4199.6 100 hr (cfs) 2.1 7.3	(csm) 1071.67 (cfs) 2.8 8.3
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300	Area (sq mi) 3.919(cfs) 0.0 3.7 9.7	Location Upstream Flow (cfs) 0.6 4.4 11.7	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5	of 0. (cfs) 1.7 6.5 17.9	100 hr (cfs) 2.1 7.3 20.7	(csm) 1071.67 (cfs) 2.8 8.3 23.9
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000	Area (sq mi) 3.919(cfs) 0.0 3.7 9.7	Location Upstream Flow (cfs) 0.6 4.4 11.7	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5	of 0. (cfs) 1.7 6.5 17.9	100 hr (cfs) 2.1 7.3 20.7	(csm) 1071.67 (cfs) 2.8 8.3 23.9
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700	Area (sq mi) 3.919(cfs) 0.0 3.7 9.7 27.6 62.7	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400	Area (sq mi) 3.919(cfs) 0.0 3.7 9.7 27.6 62.7 109.7	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5 155.6
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100	Area (sq mi) 3.919(cfs) 0.0 3.7 9.7 27.6 62.7 109.7 163.6	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8 196.6	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5 155.6 213.6
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400	Area (sq mi) 3.919	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5 155.6
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200	Area (sq mi) 3.919	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8 196.6 258.2 341.5 439.9	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900	Area (sq mi) 3.919	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6	(csm) 1071.67 (cfs) 2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900 11.600	Area (sq mi) 3.919	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9 697.3	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6 786.8	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8 915.2	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5 1097.0	2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6 1369.2	2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6 1737.3
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900	Area (sq mi) 3.919	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8 915.2 3130.1	of 0. (cfs) 1.7 6.5 17.9 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5	(cfs) 4199.6 100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6	(csm) 1071.67 2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6 1737.3 3920.5
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.000 13.700	Area (sq mi) 3.919 (cfs) 0.0 3.7 9.7 27.6 62.7 109.7 163.6 222.2 291.2 383.5 466.1 634.6 2116.3 4084.0 3436.0	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9 697.3 2478.0 4176.6 3177.5	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6 786.8 2810.0 4198.9 2911.2	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8 915.2 3130.1 4155.3 2660.1	of 0. (cfs) 1.7 6.5 1.7 6.5 1.7, 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5 1097.0 3431.3 4042.5 2433.8	100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6 1369.2 3698.3 3877.8 2230.0	2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6 1737.3 3920.5 3672.1 2049.1
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.700 14.400	Area (sq mi) 3.919 (cfs) 0.0 3.7 9.7 27.6 62.7 109.7 163.6 222.2 291.2 383.5 466.1 634.6 2116.3 4084.0 3436.0 1890.6	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9 697.3 2478.0 4176.6 3177.5 1752.1	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6 786.8 2810.0 4198.9 2911.2 1629.9	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8 915.2 3130.1 4155.3 2660.1 1521.2	of 0. (cfs) 1.7 6.5 1.7 6.5 1.7 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5 1097.0 3431.3 4042.5 2433.8 1427.7	100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6 1369.2 3698.3 3877.8 2230.0 1347.3	2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6 1737.3 3920.5 3672.1 2049.1 1277.5
Reach Identifier Reach 2 Line Start Time (hr) 3.900 4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 10.900 11.600 12.300 13.000 13.700	Area (sq mi) 3.919 (cfs) 0.0 3.7 9.7 27.6 62.7 109.7 163.6 222.2 291.2 383.5 466.1 634.6 2116.3 4084.0 3436.0	TD or Location Upstream Flow (cfs) 0.6 4.4 11.7 31.6 68.8 117.0 171.8 230.8 303.1 397.9 476.9 697.3 2478.0 4176.6 3177.5	Amount (in) 5.921 Values @ time (cfs) 0.7 5.1 13.4 35.9 75.2 124.5 180.0 239.5 315.4 412.4 490.6 786.8 2810.0 4198.9 2911.2	Elevation (ft) 368.21 e increment (cfs) 0.9 5.8 15.5 40.7 81.8 132.1 188.3 248.5 328.3 426.8 507.8 915.2 3130.1 4155.3 2660.1 1521.2	of 0. (cfs) 1.7 6.5 1.7 6.5 1.7, 45.8 88.5 139.8 196.6 258.2 341.5 439.9 529.5 1097.0 3431.3 4042.5 2433.8	100 hr (cfs) 2.1 7.3 20.7 51.1 95.4 147.7 205.1 268.7 355.2 449.7 556.6 1369.2 3698.3 3877.8 2230.0	2.8 8.3 23.9 56.8 102.5 155.6 213.6 279.8 369.2 457.7 590.6 1737.3 3920.5 3672.1 2049.1

Line							
Start Time		Flow	Values @ time	increment	of 0.100) hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
15.800	924.5			840.5	815.9	793.0	771.6
16.500	752.0			701.5	687.6	674.7	662.5
17.200 17.900	650.9 582.7		629.1 568.1	618.7 561.2	608.9 554.4	599.5 547.8	590.7 541.3
18.600	534.9			516.0	509.8	503.6	497.3
19.300	491.1		478.7	472.5	466.3		453.9
20.000	447.7			429.2	423.0	416.8	410.6
20.700	404.4			385.8	379.6	373.4	367.2
21.400 22.100	361.0 317.4		348.5 304.9	342.3 298.6	336.1 292.4	329.8 286.1	323.6 279.9
22.800	273.6		261.0	254.8	248.5	242.2	235.9
23.500				210.5	204.0	197.7	191.2
24.200	183.8		166.2	156.4	146.7	136.6	126.2
24.900 25.600	115.4 49.5		93.7 36.9	83.7	74.2 27.6	65.2	57.0 20.7
26.300	17.9	15.5	13.4		10.0	8.7	7.5
27.000		5.6 1.9	4.8	4.1	3.5 1.2	3.0	2.6
27.700			4.8 1.6	4.1 1.4	1.2	1.0	0.8
28.400	0.7	0.0					
			Runoff				
				Elevation			Rate
Identifier	(sq mi)	Location	(in)	(IL)	(111.)	(CIS)	(CSIII)
Reach 2	3.919	Downstream	5.921	368.21	13.21	4197.9	1071.23
Line							
Start Time			Values @ time				
			Values @ time (cfs)				
Start Time (hr)	(cfs)	(cfs)	(cfs) 2.0	(cfs) 2.4	(cfs) 3.6	(cfs) 4.2	(cfs)
Start Time (hr) 4.200 4.900	(cfs) 0.0 5.6	(cfs) 1.3 6.3	(cfs) 2.0	(cfs) 2.4	(cfs) 3.6 9.3	(cfs) 4.2 11.2	(cfs) 4.9 12.9
Start Time (hr) 4.200 4.900 5.600	(cfs) 0.0 5.6 14.9	(cfs) 1.3 6.3 17.2	(cfs) 2.0 7.1 19.9	(cfs) 2.4 8.0 23.0	(cfs) 3.6 9.3 26.5	(cfs) 4.2 11.2 30.4	(cfs) 4.9 12.9 34.7
Start Time (hr) 4.200 4.900	(cfs) 0.0 5.6	(cfs) 1.3 6.3 17.2 44.3	(cfs) 2.0 7.1 19.9 49.6 93.4	(cfs) 2.4 8.0 23.0	(cfs) 3.6 9.3	(cfs) 4.2 11.2	(cfs) 4.9 12.9
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3	3.6 9.3 26.5 61.0 107.6 161.3	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1	3.6 9.3 26.5 61.0 107.6 161.3 219.7	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3	2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6	2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9	(cfs) 3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5	2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7	(cfs) 3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6 4172.3	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0	2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3 2497.5	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0 2287.3 1369.7	2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3 2099.6 1296.9	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4 1934.5 1233.5	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2 1791.0 1177.8	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4 1664.2 1127.8
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6 4172.3 2731.4 1551.7 1082.4	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3 2497.5 1453.8 1040.3	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0 2287.3 1369.7 1001.9	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3 2099.6 1296.9 966.5	(cfs) 3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4 1934.5 1233.5 933.7	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2 1791.0 1177.8 903.0	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4 1664.2 1127.8 874.5
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6 4172.3 2731.4 1551.7 1082.4 847.9	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3 2497.5 1453.8 1040.3 822.9	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0 2287.3 1369.7 1001.9	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3 2099.6 1296.9 966.5 777.7	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4 1934.5 1233.5 933.7 757.5	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2 1791.0 1177.8 903.0 739.0	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4 1664.2 1127.8 874.5 721.7
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100 16.800	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6 4172.3 2731.4 1551.7 1082.4 847.9 705.8	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3 2497.5 1453.8 1040.3 822.9 691.5	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0 2287.3 1369.7 1001.9 799.5 678.4	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3 2099.6 1296.9 966.5 777.7 666.0	(cfs) 3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4 1934.5 1233.5 933.7 757.5 654.2	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2 1791.0 1177.8 903.0 739.0 643.0	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4 1664.2 1127.8 874.5 721.7 632.1
Start Time (hr) 4.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100	(cfs) 0.0 5.6 14.9 39.3 79.9 129.9 185.9 245.8 324.5 422.6 502.5 874.7 3038.6 4172.3 2731.4 1551.7 1082.4 847.9	(cfs) 1.3 6.3 17.2 44.3 86.5 137.6 194.2 255.4 337.7 436.3 522.8 1039.2 3345.6 4080.3 2497.5 1453.8 1040.3 822.9 691.5 611.7	(cfs) 2.0 7.1 19.9 49.6 93.4 145.4 202.6 265.6 351.3 447.1 548.3 1281.6 3624.5 3929.0 2287.3 1369.7 1001.9	(cfs) 2.4 8.0 23.0 55.1 100.4 153.3 211.1 276.5 365.2 455.4 580.2 1626.9 3860.7 3734.3 2099.6 1296.9 966.5 777.7 666.0	3.6 9.3 26.5 61.0 107.6 161.3 219.7 287.9 379.4 463.6 620.9 2008.1 4041.2 3506.4 1934.5 1233.5 933.7 757.5	(cfs) 4.2 11.2 30.4 67.1 114.9 169.4 228.3 299.6 393.7 473.6 677.6 2376.4 4155.0 3253.2 1791.0 1177.8 903.0 739.0	(cfs) 4.9 12.9 34.7 73.4 122.3 177.6 237.0 311.8 408.2 486.4 758.5 2715.3 4197.1 2987.4 1664.2 1127.8 874.5 721.7

Line					5 0 100		
Start Time (hr)			Values @ time (cfs)				
18.900 19.600 20.300 21.000 21.700 22.400 23.100 23.800 24.500 25.200 25.900 26.600 27.300 28.000	4.3	511.6 468.1 424.8 381.4 337.9 294.2 250.3 205.8 149.5 76.9 28.8 10.5 3.7	287.9 244.0 199.6 139.6 67.8 24.9 9.0	499.1 455.7 412.4 369.0 325.4 281.7 237.8 193.1 129.2 59.3 21.6 7.8 2.7 0.9	449.5 406.2 362.8 319.2 275.4 231.5 186.0 118.5 51.6 18.7 6.7	486.7 443.3 400.0 356.5 312.9 269.1 225.2 177.8 107.2 44.6 16.2 5.8 2.0 0.0	437.1 393.8 350.3 306.7 262.9 218.9 168.9 96.6 38.5 14.0 5.0
Area or Reach Identifier	Drainage Area (sq mi)	Rain Gage ID or Location	Runoff Amount l (in)	Elevation (ft)	Peak Flo Time (hr)	ow Rate (cfs)	Rate
DA 5	0.133		6.205		12.26	370.6	2790.14
Line Start Time (hr)		(cfs)	Values @ time (cfs)			(cfs)	(cfs)
4.600 5.300 6.000 6.700 7.400 8.100 8.800 9.500 10.200 11.600 12.300 13.700 14.400 15.100 15.800 17.200 17.900 18.600 19.300 20.700 21.400 22.100	0.5 2.1 3.9 5.9 8.0 10.2 12.4 17.1 20.3 17.4 54.6 363.4 69.5 23.9 29.2 27.1 21.9 20.5 19.0 17.5 16.1 14.6 13.1 11.6 10.1 8.5	8.3 10.5 12.7 17.6 20.8 20.6 68.8 302.2 59.5 26.6	4.5 6.5 8.6 10.8 13.1 18.1 21.2 25.0 91.5 232.0 51.0 28.6 28.7 24.4	4.8 6.8 9.0 11.2 13.5 18.6 21.7 30.0 124.7 177.0 43.5 29.4	14.5 19.0 21.3 35.4 170.8 133.5	15.6 19.5 18.6 41.1 246.6	3.7 5.6 7.7 9.9 12.1 16.4 19.9 16.5 47.0 346.1 82.6 24.1 29.5

WinTR-20 Version 3.20

Page 37

09/04/2020 13:12

Line Start Time		Flow	Values @ time	increment	of 0.1	.00 hr	
(hr)			(cfs)				
22.800 23.500 24.200	7.0 5.5 2.8	6.8 5.3 1.5	6.6 5.1 0.7	6.4 4.9 0.0	6.2 4.6	6.0 4.4	5.7 4.0
Reach	Area	ID or	Runoff Amount (in)		Time	Flow Rate (cfs)	Rate
DA 6A	0.047		6.675		12.39	111.4	2376.25
Line Start Time (hr)	 (cfs)		Values @ time (cfs)			.00 hr (cfs)	(cfs)
4.300 5.000 5.700 6.400 7.100 7.800 8.500 9.200 9.900 10.600 11.300 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000 19.700 20.400 21.100 21.800 22.500 23.200 23.900 24.600	0.0 1.1 1.8 2.5 3.3 4.1 4.9 5.8 7.6 8.6 11.1 43.7 74.9 19.8 10.6 10.4 8.8 7.2 6.7 6.2 5.6 14.5 4.0 3.4 2.9 2.4 1.8 0.0	6.6 6.1 5.5 5.0 4.5 3.9 3.4 2.8	1.6	0.7 1.3 2.1 2.8 3.6 4.4 5.2 6.7 8.1 7.4 17.2 103.6 39.8 11.6 10.7 10.1 8.2 7.5 7.0 6.5 5.4 4.3 3.8 4.3 3.8 4.4	0.8 1.4 2.2 2.9 3.7 4.5 5.3 7.0 8.2 7.5 20.4 111.4 33.6 10.6 9.8 8.1 7.5 6.4 5.3 4.2 3.7 3.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10	2.0	1.0 1.7 2.4 3.2 4.8 5.4 8.5 9.8 91.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
Area or Reach Identifier	Area	Rain Gage ID or Location	Amount	Elevation (ft)	Time		Rate
DA 6B	0.014		7.704	(/	12.13		4586.90

Page 38

09/04/2020 13:12

WinTR-20 Version 3.20

Line Start Time		Flow	Values @ tim	e increment	of O	100 hr	
(hr)		(cfs)				(cfs)	
2.800 3.500 4.200 4.900 5.600 6.300 7.700 8.400 9.100 9.800 10.500 11.200 11.900 12.600 13.300 14.000 14.700 15.400 16.100 16.800 17.500 18.200 18.900 19.600 20.300 21.700 22.400 23.100	0.0 0.7 1.0 1.2 1.4 1.7 1.9 2.1 2.3 2.7 3.1 3.4 5.7 26.3 10.2 3.4 3.1 2.5 2.3 2.2 2.0 1.8 1.7 1.5 1.3	0.5 0.8 1.0 1.2 1.5 1.7 1.9 2.1 2.3 2.9 3.2 2.2 6.5 36.7 8.2 2.6 3.3 3.1 2.5 2.3 2.1 2.5 2.1 2.0 1.8 1.6 1.5	0.5 0.8 1.0 1.3 1.5 1.7 1.9 2.1 2.3 2.9 3.2 2.0 7.3 60.7 7.3 1.8 3.3 3.1 2.5 2.3 2.1 2.0 1.8 1.6 1.5 1.7	0.6 0.8 1.1 1.3 1.5 1.7 2.0 2.2 2.3 3.0 3.2 2.7 8.1 43.8 6.5 2.8 3.3 3.0 2.4 2.3 2.1 1.9 1.8 1.6 1.4 1.3 1.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.6 0.9 1.1 1.3 1.6 1.8 2.0 2.2 2.4 3.0 3.3 3.4 11.0 26.9 5.7 3.4 2.2 2.1 1.9 1.7 1.6 1.4 1.2 1.1 0.9 0.7 0.6	0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.2 2.4 3.1 3.3 4.2 14.6 19.1 5.0 3.4 3.2 2.6 2.4 2.2 2.0 1.9 1.7 1.5 1.4 1.5 1.6 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.7 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	0.7 0.9 1.2 1.4 1.6 1.8 2.2 2.4 3.1 3.3 5.0 20.1 14.3 4.2 2.5 2.4 2.2 2.9 1.7 1.5 1.4 1.6 0.9 0.7 0.5
23.800		- · · ·			- 1	-1	
Reach	Area	ID or	Runoff Amount (in)	Elevation	Time		Rate
Reach 3	4.112	Upstream	5.945	354.91	13.20	4280.1	1040.75
Line Start Time (hr)	 (cfs)		Values @ tim (cfs)			100 hr (cfs)	
2.800 3.500 4.200 4.900 5.600 6.300 7.000 7.700 8.400	0.0 0.7 1.0 8.9 20.8 48.1 91.7	0.5 0.8 2.3 10.0 23.5 53.5 98.8	0.5 0.8 3.5 11.1 26.7 59.2 106.1 161.3 221.7	0.6 0.8 4.1 12.4 30.2 65.2 113.6 169.7 230.7	0.6 0.9 5.8 14.1 34.1 71.5 121.2 178.1 239.7	0.7 0.9 6.9 16.4 38.4 78.0 129.0 186.7 248.8	0.7 0.9 7.9 18.5 43.1 84.8 136.9 195.3 257.9
WinTR-20 Ve	ersion 3.20	0	Page 3	9		09/04/2020	13:12

Line							
Start Time		Flow	Values @ ti	me incremen	nt of 0.3	100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
9.100	267.6	278.5	290.2	302.3	314.6	327.2	340.2
9.800	353.6			396.2	411.0	426.0	441.1
10.500	456.2	468.4	476.1	482.4	491.8	505.9	524.6
11.200	547.7	575.8	609.6	650.1	703.6	781.2	895.4
11.900				2098.9	2501.4		3067.0
12.600	3317.0	3561.9	3794.5	3998.4	4156.0	4252.2	4279.9
13.300	4242.8	4139.3	3977.1	3775.2	3545.6	3294.3	3030.1
14.000	2775.0	2541.4	2331.2	2143.3	1977.9	1834.0	1706.8
14.700	1593.9	1495.6	1411.1	1337.8	1273.5	1216.1	1164.3
15.400			1035.4	999.6	966.3	935.3	906.4
16.100	879.5	854.1	830.4	808.3	787.8	768.9	751.4
16.800	735.2	720.5	707.1	694.4	682.3	670.7	659.6
17.500			628.7	619.4	610.9	603.0	595.4
18.200			574.1	567.2	560.5	553.8	547.2
18.900			527.5	521.0	514.4	507.9	501.4
19.600			481.8	475.3	468.8	462.3	455.8
20.300			436.3	429.8	423.3	416.8	410.3
21.000			390.7	384.1	377.6		364.5
21.700			344.9	338.3	331.8	325.2	318.7
22.400			299.0	292.4	285.8	279.2	272.6
23.100				246.2	239.6	233.0	226.4
23.800				198.7	190.2		170.4
24.500			139.5	129.1	118.5		96.6
25.200		28.7	67.7	59.2	51.5		38.5
25.900		20.7		21.6	18.7 6.7	16.2 5.8	14.0
26.600 27.300				7.8 2.7	2.3	2.0	5.0 1.7
28.000			1.0	0.9	0.7	0.0	1.7
			Runoff			Flow	
Reach		ID or		Elevation		Rate	
Identifier				(ft)	(nr)	(cfs)	(csm)
Reach 3	4.112	Downstream	5.944	354.90	13.25	4271.5	1038.67
Line							
Start Time			Values @ ti				
(hr)	(cfs)	(cfs)	(cfs)	(cis)			(cfs)
4.300			3.5	4.8	6.2	7.3	8.3
5.000		10.4		13.1	15.1	17.2	19.4
5.700		24.8	28.0	31.7	35.8	40.2	45.1
6.400			61.6	67.7	74.1	80.7	87.5
7.100		101./	109.1	116.6	124.3	132.1	140.0
7.800			164.6	173.0	181.5		198.8
8.500				234.2	243.3		261.7
9.200			295.0	307.2	319.6		345.5
9.900		373.1		402.1	417.0	432.0	447.1
10.600	401.2	471.3 589.2	4/8.4 625.7	486.1 671.1	497.4	513.4	533.8 959.9
12.000				2261.7	734.3 2621.2	826.3 2908.0	959.9 3165.4
			1033./		ZUZ1.Z		
WinTR-20 V	ersion 3.2	0	Page	40		09/04/202	20 13:12

Line Start Time						100 hr	
(hr) 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000 19.700 20.400 21.100 21.800 22.500 23.200 23.900 24.600 25.300 26.000	(cfs) 3413.7 4201.4 2682.6 1555.3 1100.6 869.5 729.4 644.8 585.3 538.0 492.3 446.7 401.2 355.4 309.5 263.4 216.4 155.6 82.6 31.4	634.6 578.3 531.5 485.8 440.2 394.6 348.9 302.9 256.8 209.7 145.5 73.2	3875.2 3896.0 2257.0 1382.3 1021.3 821.7 702.1 625.0 571.4 524.9 479.3 433.7 388.1 342.3 296.4 250.2	4060.5 3683.6 2078.2 1312.6 986.4 800.2 689.6 616.0 564.5 518.4 472.8 427.2 381.6 335.8 289.8 243.6 195.3 124.9 56.2 20.4	4193.6 3445.5 1921.5 1251.0 954.0 780.4 677.7 607.8 557.8 511.8 466.3 420.7 375.0 329.2 283.2 237.0 186.3 114.0 48.8 17.7	(cfs) 4262.2 3189.0 1784.0 1195.7 923.9 762.0 666.3 600.0 551.2 505.3 459.7 414.2 368.5 322.6 276.6 230.4 176.4 103.0 42.2 15.3	(cfs) 4264.3 2928.8 1662.4 1145.9 895.8 745.0 655.3 592.6 498.8 453.2 407.7 362.0 316.1 270.0 223.6 166.1 92.6 36.4 13.3
26.700 27.400 28.100	11.5 4.1 1.3	9.9 3.5 1.1	8.5 3.0 1.0	7.4 2.6 0.8	6.4 2.2 0.0	5.5 1.9	4.7 1.6
Reach	Area	ID or	Amount	Elevation	n Time	Flow Rate (cfs)	Rate
DA 7 Line	0.030		6.908		12.23	94.0	3166.28
Start Time (hr)						100 hr (cfs)	
4.000 4.700 5.400 6.100 6.800 7.500 8.200 9.600 10.300 11.000 11.700 12.400 13.100 13.800 14.500		1.4 1.9	0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.1 5.3 6.0 8.4 34.3 37.6 9.5 6.9 6.6	1.6	1.2	1.2 1.7 2.2 2.7	0.8 1.3 1.8 2.3 2.8 3.3 3.8 5.0 5.7 4.8 14.9 87.8 15.0 6.8 6.2 5.1
WinTR-20 Ve	ersion 3.20	0	Page	41		09/04/2020	13:12

Line			Maluar & Hima		of 0 1	00 h	
Start Time (hr)		(cfs)	Values @ time (cfs)				
15.900 16.600 17.300 18.000 18.700 19.400 20.100 20.800 21.500 22.200 22.900 23.600 24.300	5.0 4.7 4.3 4.0 3.6 3.3 2.9 2.6 2.2 1.9 1.5	5.0 4.6 4.3 3.9 3.6 3.2 2.9 2.5 2.2 1.8 1.5	4.9 4.6 4.2 3.9 3.5 3.2 2.8 2.5 2.1 1.8 1.4	4.9 4.5 4.2 3.8 3.5 3.1 2.8 2.4 2.1 1.7 1.4	4.8 4.5 4.1 3.8 3.4 3.1 2.7 2.4 2.0 1.7 1.3 1.0	4.8 4.4 4.1 3.7 3.4 3.0 2.7 2.3 2.0 1.6 1.3 0.9	4.7 4.4 4.0 3.7 3.3 3.0 2.6 2.3 1.9 1.6 1.2
Reach	Area	ID or		Elevation	Time		Rate (csm)
DA 8	0.077		6.799		12.29	211.2	2758.83
Line Start Time (hr)			Values @ time (cfs)				(cfs)
3.800 4.500 5.200 5.900 6.600 7.300 8.000 9.400 10.100 10.800 11.500 12.200 12.900 13.600 14.300 15.700 16.400 17.100 17.800 19.200 19.900 20.600 21.300 22.000	16.5	16.3 13.1 12.2 11.3 10.5 9.6 8.7 7.8 6.9 6.0	15.7 13.0 12.1 11.2	0.9 1.9 3.1 4.4 5.7 7.0 8.3 9.5 12.7 14.5 15.5 52.4 158.0 34.5 16.7 17.2 14.9 12.9 12.0 11.1 10.2 9.3 8.4 7.5 6.6 5.8 4.9	1.0 2.1 3.3 4.5 5.8 7.1 8.4 9.8 13.0 14.7 18.5 70.1 123.7 29.3 17.3 17.0 14.3 12.7 11.8 11.0 10.1 9.2 8.3 7.4 6.5 5.6 4.7	1.2 2.3 3.5 4.7 6.0 7.3 8.6 10.3 13.2 14.6 21.8 94.7 95.5 24.5 17.5 16.9 13.8 12.6 11.7 10.8 10.0 9.1 8.2 7.3 6.4 5.5	1.3 2.4 3.6 96.2 78.8 10.5 13.4 25.3 133.8 20.1 17.6 16.7 13.5 11.6 10.7 8.9 8.0 7.2 6.3 4.5
WinTR-20 Ve	ersion 3.20	0	Page 42			09/04/2020	13:12

22.700						J		
23.400 3.5 3.3 3.2 3.1 2.9 2.8 2.7 24.100 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 1.3 0.7 0.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Start Time							(cfs)
Reach 4 4.219 Upstream 5.967 352.90 13.24 4313.9 1022.55 Line Start Time (cfs) (cfs	23.400	3.5	3.3	3.2	3.1	2.9		3.6 2.7
Line Start Time	Reach	Area	ID or	Amount	Elevation	n Time	Rate	Rate
Start Time (hr) (cfs) (c	Reach 4	4.219	Upstream	5.967	352.90	13.24	4313.9	1022.55
4.500 5.8 7.2 8.8 10.1 11.4 12.7 14.0 5.200 15.4 17.1 19.4 21.7 24.2 26.9 30.1 5.900 33.6 37.5 41.8 46.5 51.6 57.1 62.8 6.600 68.9 75.3 81.9 88.8 95.9 103.1 110.6 7.300 118.2 126.0 133.9 142.0 150.2 158.5 167.0 8.000 175.5 184.2 192.9 201.8 210.7 219.7 228.8 8.700 238.0 247.2 256.5 265.8 275.6 286.6 298.7 9.400 311.4 324.2 337.1 350.2 363.8 377.7 392.0 10.100 406.7 421.7 437.0 452.4 467.8 481.5 489.5 10.800 494.7 502.6 516.4 535.9 560.7 590.5 625.8 11.500 667.4 719.3 793.9 904.0 1064.3 1290.9 1630.6	Start Time							
20.600 443.4 436.7 430.1 423.4 416.7 410.0 403.3 21.300 396.6 389.9 383.2 376.4 369.7 363.0 356.3 22.000 349.5 342.8 336.1 329.3 322.6 315.8 309.1 22.700 302.4 295.6 288.8 282.0 275.3 268.5 261.7 23.400 255.0 248.2 241.4 234.6 227.6 220.3 213.3 24.100 206.3 197.7 187.5 177.1 166.1 155.6 145.5 24.800 135.4 124.9 114.0 103.0 92.6 82.7 73.2 25.500 64.3 56.2 48.8 42.2 36.4 31.4 27.2 26.200 23.6 20.4 17.7 15.3 13.3 11.5 9.9 26.900 8.5 7.4 6.4 5.5 4.7 4.1 3.5	3.800 4.500 5.200 5.900 6.600 7.300 8.000 8.700 9.400 10.100 10.800 11.500 12.200 12.900 13.600 14.300 15.700 16.400 17.100 17.800 19.200 19.200 20.600 21.300 22.700 23.400 24.100 24.800 25.500 26.200 26.900 27.600	0.0 5.8 15.4 33.6 68.9 118.2 175.5 238.0 311.4 406.7 494.7 667.4 2110.1 3951.2 3917.7 2281.4 1405.2 1039.7 838.8 717.9 639.7 584.8 537.1 490.2 443.4 396.3 302.4 255.0 206.3 135.4 64.3 23.6 8.5 3.0	0.6 7.2 17.1 37.5 75.3 126.0 184.2 247.2 324.2 421.7 502.6 719.3 2560.7 4123.6 3704.2 2102.4 1335.1 1004.6 817.1 705.3 630.5 577.8 530.4 4836.7 389.9 342.8 295.6 248.2 197.7 124.9 56.2 20.4 7.4 2.6	0.7 8.8 19.4 41.8 81.9 133.9 192.9 256.5 337.1 437.0 516.4 793.9 2883.5 4247.0 3467.5 1945.6 1272.6 972.0 797.2 693.3 622.1 570.9 523.7 476.9 430.1 383.2 336.1 288.8 241.4 187.5 114.0 48.8 17.7 6.4 2.2	1.4 10.1 21.7 46.5 88.8 142.0 201.8 265.8 350.2 452.4 535.9 904.0 3116.4 4307.8 3212.4 1807.9 1216.2 941.7 778.6 681.7 614.1 517.0 470.2 423.4 376.4 329.3 282.0 234.6 177.1 103.0 42.2 15.3 5.5	1.6 11.4 24.2 51.6 95.9 150.2 210.7 275.6 363.8 467.8 560.7 1064.3 3326.8 4303.2 2953.0 1686.0 1165.6 913.4 761.4 670.5 557.3 510.3 463.5 416.7 369.7 322.6 275.3 227.6 166.1 92.6 36.4 13.3 4.7	1.8 12.7 26.9 57.1 103.1 158.5 219.7 286.6 377.7 481.5 590.5 1290.9 3537.2 4233.8 2707.0 1578.6 1119.7 886.9 745.7 659.8 599.1 5503.6 456.8 410.0 363.0 315.8 220.3 155.6 82.7 31.4 11.5 4.1	3.1 14.0 30.1 62.8 110.6 167.0 228.8 298.7 392.0 489.5 625.8 1630.6 3750.1 4100.1 2483.1 1485.5 1077.8 862.0 731.3 649.5 591.9 543.8 496.9 450.1 403.3

Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area	ID or	Amount	Elevation	Time	Rate	Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
Reach 4	4.219	Downstream	5.966	352.90	13.29	4311.4	1021.97
Line							
Start Time (hr)			Values @ tir (cfs)	me increment (cfs)	t of 0.1 (cfs)	100 hr (cfs)	(cfs)
(111)	(CIS)	(CIS)	(CIS)	(CIS)	(CIS)	(CIS)	(CLS)
4.100			1.7	1.9	4.8	6.5	8.1
4.800			12.1 25.6	13.4 28.5	14.7	16.3	18.3
5.500 6.200			25.6 54.4	60.0	31.8 65.9	35.5 72.2	39.7 78.7
6.900			99.6	106.9	114.5	122.2	130.0
7.600			154.4	162.8	171.3	180.0	188.7
8.300			215.3	224.4	233.5	242.7	251.9
9.000			281.1	292.7	305.2	318.0	330.8
9.700			370.9	385.0	399.5	414.4	429.5
10.400			475.2	486.1	492.1	498.3	509.1
11.100			575.5	608.0	646.5	692.5	754.8
11.800	846.4	981.0	1173.0	1450.6	1870.4	2351.0	2736.5
12.500			3434.3	3646.4	3854.7	4043.0	4191.9
13.200			4273.5	4170.4	4010.1	3810.6	3584.9
13.900			2825.3	2590.4	2377.9	2187.9	2020.3
14.600			1629.8	1529.7	1443.4	1368.6	1302.5
15.300			1141.7	1097.9	1058.1	1021.5	987.7
16.000			899.7	874.0	850.0	827.5	806.8
16.700			753.2	738.2	724.4	711.4	699.1
17.400			665.0	654.5	644.4	634.9	626.1
18.100 18.800			602.7 553.8	595.4 547.1	588.2 540.4	581.2 533.7	574.2 527.0
19.500			506.9	500.2	493.5	486.8	480.1
20.200			460.1	453.4	446.7	440.0	433.3
20.900			413.3	406.6	399.8	393.1	386.4
21.600			366.3	359.6	352.8	346.1	339.4
22.300			319.1	312.4	305.7	298.9	292.1
23.000			271.8	265.0	258.3	251.5	244.7
23.700	237.9	231.1	223.8	216.7	209.8	202.1	192.4
24.400			160.7	150.4	140.4	130.0	119.4
25.100			87.5	77.8	68.6	60.1	52.3
25.800			33.8	29.2	25.3	21.9	19.0
26.500			12.3	10.6	9.2	7.9	6.8
27.200				3.8	3.2	2.8	2.4
27.900	2.0	1.7	1.5	1.2	1.0	0.9	0.0
Area or	Drainage	Rain Gage	Runoff		Peak	Flow	
Reach	Area	ID or	Amount	Elevation		Rate	Rate
Identifier	(sq mi)	Location	(in)	(ft)	(hr)	(cfs)	(csm)
DA 9	0.155		6.325		12.28	432.6	2796.50

Line Start Time (hr)				me increment (cfs)	of 0. (cfs)	100 hr (cfs)	
4.300 5.000 5.700 6.400 7.100 7.800 8.500 9.200 9.900 10.600 11.300 12.000 12.700 13.400 14.100 14.800 15.500 16.200 16.900 17.600 18.300 19.000 19.700 20.400 21.100 22.500 23.200 23.900	0.0 2.1 4.3 6.6 9.0 11.6 14.2 17.6 23.1 25.7 42.0 199.1 161.1 43.5 34.7 33.1 26.9 24.7 23.0 21.3 19.6 17.8 16.1 14.3 5.7	0.6 2.4 4.6 6.9 9.4 11.9 14.5 19.0 23.6 22.7 48.8 286.2 123.7 35.3 34.7 32.8 26.4 24.5 22.8 21.1 19.3 17.6 15.8 14.1 12.5 8.8	0.8 2.7 4.9 7.3 9.7 12.3 14.9 20.0 24.1 20.1 55.8 400.7 99.3 28.8 34.6 32.4 26.1 24.3 22.5 20.8 19.1 17.3 15.6 13.8 12.0 10.3 8.5 6.7 4.7	1.1 3.0 5.2 7.6 10.1 12.7 15.3 20.8 24.6 20.9 64.7 427.4 83.2 28.2 34.3 31.8 25.8 24.0 22.3 20.6 18.8 17.1 15.3 13.6 11.8 10.0 8.2	1.3 3.3 5.6 8.0 10.5 13.0 15.6 21.4 25.1 24.6 81.0 361.1 71.1 31.1 34.0 30.4 25.5 23.8 22.1 20.3 18.6 16.8 15.1 13.3 11.5 9.8 8.0 6.2 1.9	1.6 3.6 5.9 8.3 10.8 13.4 16.0 22.0 25.7 29.7 107.4 278.4 60.9 33.5 33.7 28.8 25.3 23.5 21.8 20.1 18.3 16.6 14.8 13.1 11.3 9.5 7.7 6.0 0.9	1.9 3.9 6.2 8.7 11.2 13.8 16.5 22.5 26.1 35.6 145.8 213.2 51.9 34.4 33.4 27.6 25.0 23.3 21.6 19.8 18.1 16.3 14.6 12.8 11.0 9.3 7.5 5.7
Area or Reach	Area	ID or	Amount	Elevation	Time	Flow Rate	Rate
Identifier OUTLET	(sq mi) 4.373	Location	(in) 5.979	(ft)	(hr)		(csm)
Line	4.373		3.919		13.20	1301.0	997.90
Start Time (hr)				me increment (cfs)	of 0. (cfs)	100 hr (cfs)	
4.100 4.800 5.500 6.200 6.900 7.600 8.300 9.000 9.700 10.400 11.100	0.0 11.1 24.2 50.1 93.7 148.8 210.9 277.3 365.8 470.5 555.6	1.3 12.7 26.9 55.3 101.0 157.4 220.1 287.3 379.7 486.4 583.8	1.7 14.2 29.8 60.9 108.6 166.0 229.5 298.7 393.9 501.0 617.5	2.5 15.8 33.1 66.9 116.3 174.8 238.9 311.7 408.6 508.8 656.8	5.6 17.4 36.7 73.2 124.2 183.6 248.4 325.2 423.6 512.2 702.3	7.5 19.3 40.8 79.8 132.3 192.6 257.9 338.7 439.0 519.2 757.2	9.4 21.6 45.2 86.6 140.5 201.7 267.6 352.2 454.7 533.7 835.9
WinTR-20 Ve	ersion 3.20)	Page	45		09/04/2020	13:12

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

Line							
Start Time		Flow	Values @ t	ime increm	went of $0.$	100 hr	
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
11.800	953.7	1126.8	1372.1	1736.7	2271.0	2778.1	3097.7
12.500	3285.7	3437.5	3595.4	3770.1	3954.0	4126.2	4263.0
13.200	4344.9	4363.1	4317.0	4205.7	4038.9	3838.7	3616.0
13.900	3371.6	3113.4	2860.0	2625.1	2412.5	2222.2	2054.3
14.600	1907.3	1777.7	1662.9	1562.5	1475.8	1400.4	1333.0
15.300	1272.0	1217.4	1168.6	1124.3	1084.1	1047.3	1013.2
16.000	981.6	952.1	924.5	898.5	874.2	851.6	830.6
16.700	811.1	792.9	776.2	761.0	746.9	733.7	721.2
17.400	709.1	697.5	686.3	675.5	665.2	655.5	646.5
18.100	638.1	630.0	622.3	614.7	607.3	600.0	592.8
18.800	585.7	578.7	571.7	564.7	557.7	550.8	543.8
19.500	536.8	529.9	522.9	516.0	509.1	502.1	495.2
20.200	488.2	481.3	474.4	467.4	460.5	453.6	446.6
20.900	439.7	432.8	425.8	418.8	411.9	404.9	398.0
21.600	391.0	384.1	377.1	370.1	363.1	356.1	349.1
22.300	342.1	335.1	328.1	321.2	314.2	307.1	300.1
23.000	293.1	286.0	279.0	272.0	265.0	258.0	250.9
23.700	243.9	236.8	229.3	221.9	214.5	205.5	194.3
24.400	183.2	171.5	160.7	150.4	140.4	130.0	119.4
25.100	108.3	97.6	87.5	77.8	68.6	60.1	52.3
25.800	45.3	39.1	33.8	29.2	25.3	21.9	19.0
26.500	16.5	14.2	12.3	10.6	9.2	7.9	6.8
27.200	5.9	5.1	4.4	3.8	3.2	2.8	2.4
27.900	2.0	1.7	1.5	1.2	1.0	0.9	0.0

NOAA 14 precipitation, smoothed values Ohio River Basin Lat (dd): 39.1913 Lon (dd): -77.2120° MD Montgomery County

Area or Reach	Drainage Area		Peak 10 yr stm1	Flow by Sto	orm	
Identifier	(sq mi)	(cfs)	(cfs)		(cfs)	(cfs)
DA 1 DA 2	3.519 0.152	1051.4 118.5		3948.0 333.4		
DA 3	0.141	106.0		294.5		
DA 5	0.133	132.4		370.6		
DA 7	0.030	40.9	63.4	94.0		
DA 8	0.077	86.6	138.1	211.2		
DA 9	0.155	159.4	270.1	432.6		
DA 4A	0.014	21.6	33.9	50.7		
DA 4B	0.094	104.9	169.9	262.1		
DA 6A	0.047	42.7	70.6	111.4		
DA 6B	0.014	35.1	47.7	64.5		
Reach 1	3.670	1078.6	2128.1	4054.5		
DOWNSTREAM		1077.7	2124.6	4049.9		
Reach 2	3.919	1120.0	2201.4	4199.6		
DOWNSTREAM		1119.8	2200.7	4197.9		
Reach 3	4.112	1142.0	2240.2	4280.1		
DOWNSTREAM		1131.6	2232.6	4271.5		
Reach 4	4.219	1142.6	2252.6	4313.9		
DOWNSTREAM		1142.4	2251.8	4311.4		
OUTLET	4.373	1155.2	2276.3	4364.6		

Cabin Branch Stream and Wetland Restoration Design Report

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix D: Floodplain Impacts Analysis

This analysis was completed by inserting our proposed restoration cross-sections into the approved floodplain study delineation done by VIKA for the proposed adjacent restoration. All elevations are thus in NGVD29 which is approximately 0.7' higher than the elevations shown in the restoration plans which are all in NAVD88.

								Co	abin Branch	100-YR WSE Comp	arison
	EXISTI	NG 100YF	R WSE		ı	PROPOSED	100YR WS	E - 9/3/20	20		
Reach	River Sta	Profile	Q Total	W.S. Elev	Reach	River Sta	Profile	Q Total	W.S. Elev	Comparison	
			(cfs)	(ft)				(cfs)	(ft)		Notes:
reach 1	5537.75	100-Yr	4467	378.62	reach 1	5537.75	100-Yr	4467	377.24	-1.38	
reach 1	5235.48	100-Yr	4467	376.97	reach 1	5235.48	100-Yr	4467	376.37	-0.60	
reach 1	4897.4	100-Yr	4558	374.25	reach 1	4897.4	100-Yr	4558	374.22	-0.03	
reach 1	4560.78	100-Yr	4558	373.02	reach 1	4560.78	100-Yr	4558	372.97	-0.05	
reach 1	4120.22	100-Yr	4558	371.49	reach 1	4120.22	100-Yr	4558	371.36	-0.13	
reach 1	3727.06	100-Yr	4782	369.17	reach 1	3727.06	100-Yr	4782	369.17	0.00	
reach 1	3333.78	100-Yr	4782	366.70	reach 1	3333.78	100-Yr	4782	366.80	0.10	Futher design development can cut back the right bank/bench further to reduce rise.
reach 1	3038.54	100-Yr	4782	366.74	reach 1	3038.54	100-Yr	4782	366.70	-0.04	
reach 1	2663.59	100-Yr	4782	365.69	reach 1	2663.59	100-Yr	4782	365.63	-0.06	
reach 1		100-Yr	4782	365.85	reach 1	2641.79	100-Yr	4782	365.83	-0.02	
reach 1	2566.29		Culvert		reach 1	2566.29		Culvert		0.00	
reach 1	2490.76	100-Yr	4782	362.92	reach 1	2490.76	100-Yr	4782	362.83	-0.09	
reach 1	2477.96	100-Yr	5004	362.08	reach 1	2477.96	100-Yr	5004	361.94	-0.14	
reach 1	2158.36	100-Yr	5004	360.63	reach 1	2158.36	100-Yr	5004	360.39	-0.24	
reach 1		100-Yr	5004	358.04	reach 1	1821.54	100-Yr	5004	358.08	0.04	Futher design development can cut back the left bank/bench further to reduce rise.
reach 1	1420.06	100-Yr	5004	356.03	reach 1	1420.06	100-Yr	5004	356.13	0.10	Futher design development can cut back the right bank/bench further to reduce rise.
	1133.82	100-Yr	5004	355.58		1133.82	100-Yr	5004	355.27	-0.31	
reach 1	766.03	100-Yr	5004	354.12	reach 1	766.03	100-Yr	5004	354.24	0.12	Futher design development can cut back the right or left bank/bench further to reduce rise
reach 1	404.14	100-Yr	5004	354.41	reach 1	404.14	100-Yr	5004	354.45	0.04	Futher design development can flatten the left bank/bench further to reduce rise.
reach 1	139.08	100-Yr	5004	353.88	reach 1	139.08	100-Yr	5004	353.89	0.01	
reach 1	103.57	100-Yr	5004	353.66	reach 1	103.57	100-Yr	5004	353.73	0.07	Further design development will modify tie-in to existing to prevent impact
reach 1	85.37	100-Yr	5004	352.04	reach 1	85.37	100-Yr	5004	351.88	-0.16	
reach 1	49		Bridge		reach 1	49		Bridge		0.00	
reach 1	9.06	100-Yr	5004	350.24	reach 1	9.06	100-Yr	5004	350.24	0.00	
reach 1	0	100-Yr	5004	350.21	reach 1	0	100-Yr	5004	350.21	0.00	
reach 1	-41	100-Yr	5004	345.98	reach 1	-41	100-Yr	5004	345.98	0.00	

	Tributary 4 100-YR WSE Comparison														
EXISTING 100YR WSE MODIFIED 100YR WSE - 9/4/2020				E - 9/4/20											
Reach	River Sta	Profile	Q Total	W.S. Elev	Reach	River Sta	Profile	Q Total	W.S. Elev	Comparison					
			(cfs)	(ft)				(cfs)	(ft)		Notes:				
Reach 1	1117.4	100 Yr	307	391.45	Reach 1	1117.4	100 Yr	307	391.45	0.00					
Reach 1	869.4	100 Yr	307	386.97	Reach 1	869.4	100 Yr	307	386.97	0.00					
Reach 1	609.53	100 Yr	307	386.34	Reach 1	609.53	100 Yr	307	386.34	0.00					
Reach 1	532.54	100 Yr	307	375.7	Reach 1	532.54	100 Yr	307	376.19	0.49	Ex. channel was very incised; proposed WSE is still within valley				
Reach 1	324.63	100 Yr	487	370.33	Reach 1	324.63	100 Yr	487	371.62	1.29	Ex. channel XS is exagurated in size at this location, rise is within ex. Valley				
Reach 1	132.8	100 Yr	487	368.76	Reach 1	132.8	100 Yr	487	368.78	0.02					
Reach 1	0	100 Yr	487	366.49	Reach 1	0	100 Yr	487	366.16	-0.33					

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix E: Well Data

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix F: Wetland Water Budgets

Cell 1

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2003-Jan	2.42	.00	-1.38	-1.00	.00	.04	.04
2003-Feb	5.10	.06	-1.24	-1.00	.00	2.91	2.95
2003-Mar	3.72	.04	-2.63	-1.00	.00	.13	3.08
2003-Apr	2.55	.00	-3.86	-1.00	.00	-2.31	.77
2003-May	7.18	.00	-3.20	-1.00	.00	2.99	3.76
2003-Jun	4.33	.00	-4.47	-1.00	.00	-1.14	2.62
2003-Jul	4.41	.00	-5.23	-1.00	.00	-1.82	.79
2003-Aug	2.64	.00	-4.33	-1.00	.00	-2.69	-7.57
2003-Sep	6.29	.04	-3.18	-1.00	.00	2.15	.26
2003-Oct	4.12	.00	-2.45	-1.00	.00	.67	.92
2003-Nov	4.68	.00	-1.74	-1.00	.00	1.94	2.86
2003-Dec	4.86	.00	-1.43	-1.00	50	1.94	4.80

Normal Year - 1988

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
1988-Jan	2.56	.00	-1.14	-1.00	.00	.42	.42
1988-Feb	2.80	.00	-1.69	-1.00	.00	.11	.52
1988-Mar	2.29	.00	-3.18	-1.00	.00	-1.89	-5.49
1988-Apr	3.37	.00	-3.91	-1.00	.00	-1.54	-11.65
1988-May	8.38	.05	-4.75	-1.00	.00	2.68	91
1988-Jun	1.19	.00	-6.55	-1.00	.00	-6.36	-26.36
1988-Jul	5.56	.00	-6.32	-1.00	.00	-1.76	-33.39
1988-Aug	2.80	.00	-5.73	-1.00	.00	-3.93	-49.11
1988-Sep	2.90	.00	-3.78	-1.00	.00	-1.88	-56.63
1988-Oct	1.58	.00	-2.79	-1.00	.00	-2.21	-65.46
1988-Nov	4.84	.00	-1.67	-1.00	.00	2.17	-56.76
1988-Dec	1.16	.00	-1.56	-1.00	.00	-1.40	-62.37

		1					
			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2007-Jan	1.92	.00	-1.83	-1.00	.00	91	-3.64
2007-Feb	2.40	.00	-1.65	-1.00	.00	25	-4.66
2007-Mar	2.96	.03	-3.71	-1.00	.00	-1.73	-11.56
2007-Apr	3.68	.05	-4.03	-1.00	.00	-1.29	-16.74
2007-May	.57	.00	-6.14	-1.00	.00	-6.57	-43.01
2007-Jun	2.87	.00	-6.14	-1.00	.00	-4.27	-60.10
2007-Jul	1.56	.00	-6.63	-1.00	.00	-6.07	-84.39
2007-Aug	3.46	.00	-5.73	-1.00	.00	-2.90	-96.00
2007-Sep	1.44	.00	-4.82	-1.00	.00	.00	-96.00
2007-Oct	3.28	.01	-3.10	-1.00	.00	.00	-96.00
2007-Nov	1.38	.00	-1.61	-1.00	.00	.00	-96.00
2007-Dec	2.89	.00	-1.00	-1.00	.00	.89	-92.42

Cell 2

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2003-Jan	2.42	.00	-1.38	-1.00	.00	.04	.04
2003-Feb	5.10	.02	-1.24	-1.00	.00	2.88	2.91
2003-Mar	3.72	.01	-2.63	-1.00	.00	.10	3.02
2003-Apr	2.55	.00	-3.86	-1.00	.00	-2.31	.71
2003-May	7.18	.00	-3.20	-1.00	.00	2.98	3.69
2003-Jun	4.33	.00	-4.47	-1.00	.00	-1.14	2.55
2003-Jul	4.41	.00	-5.23	-1.00	.00	-1.82	.73
2003-Aug	2.64	.00	-4.33	-1.00	.00	-2.69	-7.84
2003-Sep	6.29	.02	-3.18	-1.00	.00	2.12	.16
2003-Oct	4.12	.00	-2.45	-1.00	.00	.67	.83
2003-Nov	4.68	.00	-1.74	-1.00	.00	1.94	2.76
2003-Dec	4.86	.00	-1.43	-1.00	40	2.04	4.80

Normal Year - 1988

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
1988-Jan	2.56	.00	-1.14	-1.00	.00	.42	.42
1988-Feb	2.80	.00	-1.69	-1.00	.00	.11	.52
1988-Mar	2.29	.00	-3.18	-1.00	.00	-1.89	-5.49
1988-Apr	3.37	.00	-3.91	-1.00	.00	-1.54	-11.65
1988-May	8.38	.03	-4.75	-1.00	.00	2.66	-1.00
1988-Jun	1.19	.00	-6.55	-1.00	.00	-6.36	-26.45
1988-Jul	5.56	.00	-6.32	-1.00	.00	-1.76	-33.47
1988-Aug	2.80	.00	-5.73	-1.00	.00	-3.93	-49.20
1988-Sep	2.90	.00	-3.78	-1.00	.00	-1.88	-56.72
1988-Oct	1.58	.00	-2.79	-1.00	.00	-2.21	-65.54
1988-Nov	4.84	.00	-1.67	-1.00	.00	2.17	-56.85
1988-Dec	1.16	.00	-1.56	-1.00	.00	-1.40	-62.45

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2007-Jan	1.92	.00	-1.83	-1.00	.00	91	-3.64
2007-Feb	2.40	.00	-1.65	-1.00	.00	25	-4.66
2007-Mar	2.96	.00	-3.71	-1.00	.00	-1.75	-11.66
2007-Apr	3.68	.03	-4.03	-1.00	.00	-1.32	-16.92
2007-May	.57	.00	-6.14	-1.00	.00	-6.57	-43.19
2007-Jun	2.87	.00	-6.14	-1.00	.00	-4.27	-60.28
2007-Jul	1.56	.00	-6.63	-1.00	.00	-6.07	-84.57
2007-Aug	3.46	.00	-5.73	-1.00	.00	-3.27	-97.65
2007-Sep	1.44	.00	-4.82	-1.00	.00	-4.38	-115.17
2007-Oct	3.28	.00	-3.10	-1.00	.00	82	-118.44
2007-Nov	1.38	.00	-1.61	-1.00	.00	-1.23	-123.35
2007-Dec	2.89	.00	-1.00	-1.00	.00	.89	-119.77

Cell 3

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2003-Jan	2.42	.00	-1.38	-1.00	.00	.04	.04
2003-Feb	5.10	.47	-1.24	-1.00	.00	3.33	3.37
2003-Mar	3.72	.29	-2.63	-1.00	.00	.38	3.74
2003-Apr	2.55	.00	-3.86	-1.00	.00	-2.31	1.44
2003-May	7.18	.11	-3.20	-1.00	.00	3.09	4.53
2003-Jun	4.33	.10	-4.47	-1.00	.00	-1.04	3.48
2003-Jul	4.41	.00	-5.23	-1.00	.00	-1.82	1.66
2003-Aug	2.64	.00	-4.33	-1.00	.00	-2.69	-4.12
2003-Sep	6.29	.32	-3.18	-1.00	.00	2.43	1.40
2003-Oct	4.12	.09	-2.45	-1.00	.00	.75	2.15
2003-Nov	4.68	.11	-1.74	-1.00	.00	2.05	4.20
2003-Dec	4.86	.00	-1.43	-1.00	-1.84	.60	4.80

Normal Year - 1988

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
1988-Jan	2.56	.00	-1.14	-1.00	.00	.42	.42
1988-Feb	2.80	.00	-1.69	-1.00	.00	.11	.52
1988-Mar	2.29	.03	-3.18	-1.00	.00	-1.86	-5.35
1988-Apr	3.37	.00	-3.91	-1.00	.00	-1.54	-11.51
1988-May	8.38	.41	- 4.75	-1.00	.00	3.05	.17
1988-Jun	1.19	.00	-6.55	-1.00	.00	-6.36	-24.77
1988-Jul	5.56	.00	-6.32	-1.00	.00	-1.76	-31.80
1988-Aug	2.80	.00	-5.73	-1.00	.00	-3.93	-47.52
1988-Sep	2.90	.00	-3.78	-1.00	.00	-1.88	-55.04
1988-Oct	1.58	.00	-2.79	-1.00	.00	-2.21	-63.87
1988-Nov	4.84	.00	-1.67	-1.00	.00	2.17	-55.18
1988-Dec	1.16	.00	-1.56	-1.00	.00	-1.40	-60.78

	Dry fear - 2007										
			PET-	GW-		Net	Actual Water				
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level				
2007-Jan	1.92	.00	-1.83	-1.00	.00	91	-3.64				
2007-Feb	2.40	.00	-1.65	-1.00	.00	25	-4.66				
2007-Mar	2.96	.23	-3.71	-1.00	.00	-1.52	-10.73				
2007-Apr	3.68	.33	-4.03	-1.00	.00	-1.01	-14.78				
2007-May	.57	.00	-6.14	-1.00	.00	-6.57	-41.05				
2007-Jun	2.87	.00	-6.14	-1.00	.00	-4.27	-58.14				
2007-Jul	1.56	.00	-6.63	-1.00	.00	-6.07	-82.43				
2007-Aug	3.46	.00	-5.73	-1.00	.00	-3.27	-95.50				
2007-Sep	1.44	.00	-4.82	-1.00	.00	-4.38	-113.03				
2007-Oct	3.28	.17	-3.10	-1.00	.00	65	-115.63				
2007-Nov	1.38	.00	-1.61	-1.00	.00	-1.23	-120.54				
2007-Dec	2.89	.00	-1.00	-1.00	.00	.89	-116.96				

Cell 4

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2003-Jan	2.42	.00	-1.38	-1.00	.00	.04	.04
2003-Feb	5.10	.00	-1.24	-1.00	.00	2.86	2.89
2003-Mar	3.72	.00	-2.63	-1.00	.00	.09	2.98
2003-Apr	2.55	.00	-3.86	-1.00	.00	-2.31	.68
2003-May	7.18	.00	-3.20	-1.00	.00	2.98	3.66
2003-Jun	4.33	.00	-4.47	-1.00	.00	-1.14	2.52
2003-Jul	4.41	.00	-5.23	-1.00	.00	-1.82	.69
2003-Aug	2.64	.00	-4.33	-1.00	.00	-2.69	-7.97
2003-Sep	6.29	.00	-3.18	-1.00	.00	2.11	.11
2003-Oct	4.12	.00	-2.45	-1.00	.00	.67	.78
2003-Nov	4.68	.00	-1.74	-1.00	.00	1.94	2.71
2003-Dec	4.86	.00	-1.43	-1.00	35	2.09	4.80

Normal Year - 1988

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
1988-Jan	2.56	.00	-1.14	-1.00	.00	.42	.42
1988-Feb	2.80	.00	-1.69	-1.00	.00	.11	.52
1988-Mar	2.29	.00	-3.18	-1.00	.00	-1.89	-5.49
1988-Apr	3.37	.00	-3.91	-1.00	.00	-1.54	-11.65
1988-May	8.38	.00	- 4.75	-1.00	.00	2.63	-1.12
1988-Jun	1.19	.00	-6.55	-1.00	.00	-6.36	-26.57
1988-Jul	5.56	.00	-6.32	-1.00	.00	-1.76	-33.60
1988-Aug	2.80	.00	-5.73	-1.00	.00	-3.93	-49.32
1988-Sep	2.90	.00	-3.78	-1.00	.00	-1.88	-56.84
1988-Oct	1.58	.00	-2.79	-1.00	.00	-2.21	-65.66
1988-Nov	4.84	.00	-1.67	-1.00	.00	2.17	-56.97
1988-Dec	1.16	.00	-1.56	-1.00	.00	-1.40	-62.57

			PET-	GW-		Net	Actual Water			
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level			
2007-Jan	1.92	.00	-1.83	-1.00	.00	91	-3.64			
2007-Feb	2.40	.00	-1.65	-1.00	.00	25	-4.66			
2007-Mar	2.96	.00	-3.71	-1.00	.00	-1.75	-11.67			
2007-Apr	3.68	.00	-4.03	-1.00	.00	-1.35	-17.05			
2007-May	.57	.00	-6.14	-1.00	.00	-6.57	-43.33			
2007-Jun	2.87	.00	-6.14	-1.00	.00	-4.27	-60.42			
2007-Jul	1.56	.00	-6.63	-1.00	.00	-6.07	-84.70			
2007-Aug	3.46	.00	-5.73	-1.00	.00	-3.27	-97.78			
2007-Sep	1.44	.00	-4.82	-1.00	.00	-4.38	-115.30			
2007-Oct	3.28	.00	-3.10	-1.00	.00	82	-118.57			
2007-Nov	1.38	.00	-1.61	-1.00	.00	-1.23	-123.48			
2007-Dec	2.89	.00	-1.00	-1.00	.00	.89	-119.90			

Cell 5

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
2003-Jan	2.42	.02	-1.38	-1.00	.00	.06	.06
2003-Feb	5.10	1.08	-1.24	-1.00	.00	3.94	4.00
2003-Mar	3.72	.65	-2.63	-1.00	.00	.73	4.73
2003-Apr	2.55	.00	-3.86	-1.00	.00	-2.31	2.43
2003-May	7.18	.28	-3.20	-1.00	89	2.37	4.80
2003-Jun	4.33	.25	-4.47	-1.00	.00	89	3.91
2003-Jul	4.41	.00	-5.23	-1.00	.00	-1.82	2.09
2003-Aug	2.64	.00	-4.33	-1.00	.00	-2.69	-2.40
2003-Sep	6.29	.76	-3.18	-1.00	.00	2.87	2.27
2003-Oct	4.12	.23	-2.45	-1.00	.00	.90	3.17
2003-Nov	4.68	.29	-1.74	-1.00	59	1.63	4.80
2003-Dec	4.86	.02	-1.43	-1.00	-2.45	.00	4.80

Normal Year - 1988

			PET-	GW-		Net	Actual Water
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level
1988-Jan	2.56	.00	-1.14	-1.00	.00	.42	.42
1988-Feb	2.80	.00	-1.69	-1.00	.00	.11	.52
1988-Mar	2.29	.11	-3.18	-1.00	.00	-1.78	-5.04
1988-Apr	3.37	.00	-3.91	-1.00	.00	-1.54	-11.20
1988-May	8.38	.98	-4.75	-1.00	.00	3.61	.81
1988-Jun	1.19	.00	-6.55	-1.00	.00	-6.36	-22.20
1988-Jul	5.56	.01	-6.32	-1.00	.00	-1.75	-29.21
1988-Aug	2.80	.00	-5.73	-1.00	.00	-3.93	-44.93
1988-Sep	2.90	.00	-3.78	-1.00	.00	-1.88	-52.45
1988-Oct	1.58	.00	-2.79	-1.00	.00	-2.21	-61.27
1988-Nov	4.84	.00	-1.67	-1.00	.00	2.17	-52.58
1988-Dec	1.16	.00	-1.56	-1.00	.00	-1.40	-58.18

Dry rear - 2007									
			PET-	GW-		Net	Actual Water		
	Precip	Runoff	Pen	OUT	Outflow	Gain/Loss	Level		
2007-Jan	1.92	.00	-1.83	-1.00	.00	91	-3.64		
2007-Feb	2.40	.00	-1.65	-1.00	.00	25	-4.66		
2007-Mar	2.96	.54	-3.71	-1.00	.00	-1.21	-9.51		
2007-Apr	3.68	.74	-4.03	-1.00	.00	60	-11.93		
2007-May	.57	.00	-6.14	-1.00	.00	-6.57	-38.20		
2007-Jun	2.87	.00	-6.14	-1.00	.00	-4.27	-55.29		
2007-Jul	1.56	.00	-6.63	-1.00	.00	-6.07	-79.57		
2007-Aug	3.46	.02	-5.73	-1.00	.00	-3.25	-92.59		
2007-Sep	1.44	.00	-4.82	-1.00	.00	-4.38	-110.11		
2007-Oct	3.28	.40	-3.10	-1.00	.00	42	-111.78		
2007-Nov	1.38	.00	-1.61	-1.00	.00	-1.23	-116.69		
2007-Dec	2.89	.00	-1.00	-1.00	.00	.89	-113.12		

Cabin Branch Stream and Wetland Restoration Design Report Cabin Branch and Unnamed Tributaries

Montgomery County, Maryland

Appendix G: Sample Easement Agreement Document

EQPUGTXCVIQP'GCUGO GPV"

SHA Plat Number '(Rev)''
THIS PERPETUAL CONSERVATION EASEMENT (this "EASEMENT") is made this day of, 20, from (hereinafter, the "GRANTOR") unto the State Highway Administration of the Maryland Department of Transportation, acting for and on behalf of the State of Maryland (hereinafter, "MDOT SHA" or the "GRANTEE").
RECITALS
WHEREAS, GRANTOR is the owner of land acquired by a deed dated and recorded among the Land Records of County, Maryland, in Liber No, folio, (the PROPERTY") as shown and described on State Highway Administration Plat numbered, which plat has been or is intended to be filed for record with the electronically recorded by the Maryland State Archives; and
WHEREAS, the purpose of the EASEMENT is to provide access and long term protection of the Stream Restoration project known as for SHA Contract number, which includes design, construction, inspection, adaptive management, monitoring, and verification for stream restoration (the "WORK"); and
WHEREAS, the extent of the WORK to be completed is survey, design, construction (grading, structure placement and planting), inspection, adaptive management (grading, structure placement, planting and integrated vegetation management), monitoring, and verification; and
WHEREAS, it is the intent of the parties that notwithstanding the possible effect of the common law doctrine of merger, this EASEMENT shall not merge with the fee simple title, but shall remain effective and shall run with the land; and
WHEREAS, the total payment per §10-912(b) of the Tax-General Article of the Annotated Code of Maryland is and 00/100 Dollars (\$00); and
Pays/wg'apg'ahthi g'ty a'hanny koi 'Y J GTGCU'encwgu 'cu'crrt art key'epf 'f grgyg'hi g'apg'hi evf agu'
pqv'crrf <' WHEREAS, the undersigned certify(ies) under the penalties of perjury that the following is true to the best of his/her/their knowledge, information and belief, that in accordance with §10-912(d)(1)(i) of the Tax-General Article of the Annotated Code of Maryland, he/she/they is/are a resident(s) of the State of Maryland.
qt"

WHEREAS, GRANTOR is a resident entity under Section 10-912(a)(4) of the Tax-General Article of the Annotated Code of Maryland, the undersigned is an agent of GRANTOR, and the undersigned has the authority to sign this document on GRANTOR's behalf.

EQPUGTXCVIQP'GCUGO GPV"

SHA Plat Number '(Rev)''
THIS PERPETUAL CONSERVATION EASEMENT (this "EASEMENT") is made this day of, 20, from (hereinafter, the "GRANTOR") unto the State Highway Administration of the Maryland Department of Transportation, acting for and on behalf of the State of Maryland (hereinafter, "MDOT SHA" or the "GRANTEE").
RECITALS
WHEREAS, GRANTOR is the owner of land acquired by a deed dated and recorded among the Land Records of County, Maryland, in Liber No, folio, (the PROPERTY") as shown and described on State Highway Administration Plat numbered, which plat has been or is intended to be filed for record with the electronically recorded by the Maryland State Archives; and
WHEREAS, the purpose of the EASEMENT is to provide access and long term protection of the Stream Restoration project known as for SHA Contract number, which includes design, construction, inspection, adaptive management, monitoring, and verification for stream restoration (the "WORK"); and
WHEREAS, the extent of the WORK to be completed is survey, design, construction (grading, structure placement and planting), inspection, adaptive management (grading, structure placement, planting and integrated vegetation management), monitoring, and verification; and
WHEREAS, it is the intent of the parties that notwithstanding the possible effect of the common law doctrine of merger, this EASEMENT shall not merge with the fee simple title, but shall remain effective and shall run with the land; and
WHEREAS, the total payment per \$10-912(b) of the Tax-General Article of the Annotated Code of Maryland is and 00/100 Dollars (\$00); and
Pqvg<Կաg'qpg'qh'tj g'ty q'hqmqy kpi 'Y J GTGCU'encwugu.'cu'crrt qrt kcvg'cpf 'f gngvg'tj g'qpg'tj cv'f qgu'
pqv'crrf<' WHEREAS, the undersigned certify(ies) under the penalties of perjury that the following is true to the best of his/her/their knowledge, information and belief, that in accordance with \$10-912(d)(1)(i) of the Tax-General Article of the Annotated Code of Maryland, he/she/they is/are a resident(s) of the State of Maryland.
<u>qt</u> ''

WHEREAS, GRANTOR is a resident entity under Section 10-912(a)(4) of the Tax-General Article of the Annotated Code of Maryland, the undersigned is an agent of GRANTOR, and the undersigned has the authority to sign this document on GRANTOR's behalf.

NOW, THEREFORE, for and in consideration of the foregoing and the covenants, terms, conditions and
restrictions hereinafter set forth (the "Terms"), the receipt and sufficiency of which are hereby
acknowledged by the parties, GRANTOR unconditionally and irrevocably hereby grants and conveys
unto GRANTEE, its successors and assigns, a perpetual conservation easement, containing square
feet or of an acre of land, more or less, and identified as on State
Highway Administration Plat numbered, which plat has been or is intended to be filed for record
with and electronically recorded by the Maryland State Archives" ("EASEMENT AREA"). 'together with
the perpetual right of access to the EASEMENT AREA on, over, and through the PROPERTY, as and
when needed.
A reduced copy of State Highway Administration Plat numbered is attached hereto and
incorporated herein as <u>Gzj klk/P q03</u> .
BEING a part of the same land conveyed by a deed dated and recorded among the Land
Records of County, Maryland in Liber No, folio, from
unto

CTVENG'K'''' DURATION OF EASEMENT

This EASEMENT shall be perpetual. It is an easement in gross and as such is inheritable and assignable and runs with the land as an incorporeal interest in the EASEMENT AREA, enforceable with respect to the EASEMENT AREA by GRANTEE, its successors and assigns, against GRANTOR and its successors and assigns. The Terms contained herein shall run with the EASEMENT AREA and shall bind GRANTOR, its successors and assigns.

CTVIENG'IK PROHIBITED ACTIVITIES

- A. No commercial or recreational activities and no removal of vegetation shall occur on the EASEMENT AREA, except for:
 - 1. passive recreational activities (including hunting and fishing) that do not result in the destruction of, or harm the viability of vegetation in the EASEMENT AREA;
 - 2. wildlife management with the approval of MDOT SHA; and
 - 3. forest management, and tree maintenance practices pursuant to a forest stewardship plan prepared by a licensed, registered forester, with the approval of MDOT SHA.
- B. No materials may be dumped, placed or stored in the EASEMENT AREA, including, but not limited to, ashes, yard waste, sawdust, bark, trash, garbage, rubbish, dredge spoil, chemicals, pesticides, fertilizers, abandoned vehicles, appliances, or machinery.
- C. No excavation of materials is permitted in the EASEMENT AREA, including, but not limited to, dredging, mining and removal of loam, gravel, soil, rock, sand, coal and petroleum.
- D. No building, facility, means of access or other structure shall be constructed in the EASEMENT AREA after the date of the recordation of this EASEMENT.
- E. These additional activities are also prohibited within the EASEMENT AREA:
 - 1. use of motorized vehicles;
 - 2. agricultural use including use for cropland, waste lagoons, or pastureland;

- 3. placing structures or foundations;
- 4. placing of impervious surfaces;
- 5. placing of signs without approval;
- 6. grading; and
- 7. disposing of liquids other than clean water runoff.

"

CTVKENG'KKOMISCELLANEOUS

- A. GRANTOR and its assigns shall disclose these Terms in any subsequent sales contracts, leases, mortgages, deeds and/or other legal instruments by which any interest in the EASEMENT AREA is conveyed.
- B. GRANTOR shall notify GRANTEE in writing of the names and addresses of any party to whom the EASEMENT AREA, or any part thereof, is to be granted, conveyed or otherwise transferred, at or prior to the time said transfer is consummated.
 - C. All written notice required by these Terms shall be sent to:

GRANTOR	
	$\overline{}$

GRANTEE

Maryland Department of Transportation State Highway Administration Office of Environmental Design, Water Programs Division 707 North Calvert Street,
Mail Stop C-303
Baltimore, MD 21202

- D. GRANTEE, its employees and agents, and its successors and assigns, may perpetually and at all reasonable times enter the EASEMENT AREA to perform inspections, monitoring, verification, adaptive management (grading, structure placement, planting and integrated vegetation management) and/or to determine whether GRANTOR, or its successors and assigns, is complying with the Terms of this EASEMENT. The obligation of providing access to and from the EASEMENT AREA shall run with the land and bind the GRANTOR, and any subsequent owner of the PROPERTY.
- E. Upon any breach of any of the Terms, GRANTEE shall have the right to enforce this EASEMENT in accordance with any or all of the remedies provided in Annotated Code of Maryland Natural Resources Article, Section 5-1612, and COMAR 08.19.06.03.
- F. GRANTEE's remedies shall be cumulative and shall be in addition to any other rights and remedies available to GRANTEE either at law or in equity.

- G. No failure on the part of GRANTEE to enforce any Term hereof shall discharge or invalidate such Term or any other Term hereof or affect the right of GRANTEE to enforce the same in the event of a subsequent breach or default.
 - H. This EASEMENT shall be construed pursuant to the laws of the State of Maryland.
- I. This instrument sets forth the entire agreement of the parties with respect to the EASEMENT and supersedes all prior discussions, negotiations, understandings or agreements relating to the EASEMENT. If any Term is found to be invalid, the remainder of the Terms of this EASEMENT, and the application of such Term to persons or circumstances other than those as to which it is found to be invalid, shall not be affected thereby.
- J. This EASEMENT is based upon a form that assumes there exists a single GRANTOR and a single GRANTEE. In the event that this assumption is wrong for this EASEMENT, then, as appropriate, any Term assuming a singular GRANTOR or GRANTEE shall be interpreted to mean multiple GRANTORs or GRANTEEs, as the case may be.
- K. The terms "GRANTOR" and "GRANTEE" wherever used herein, and any pronouns used in place thereof, shall include, respectively, the above-named GRANTOR and its successors and assigns, and the above-named GRANTEE and its successors and assigns.
- SUBJECT TO and excepting from the operation and effect of this EASEMENT, any and all rights and reservations that may have been granted or reserved on, over, within, across or through the EASEMENT AREA by former owners of the Property or their predecessors in title and/or covenants or restrictions which may have been established with respect to the EASEMENT AREA by such former owners or their predecessors in title, and further subject to and excepting from the operation and effect of this EASEMENT, any and all existing rights now held or used by any public utility or public utilities across or adjacent to the EASEMENT AREA herein conveyed.
 - M. All exhibits referenced herein are attached hereto and made a part hereof.
- The Recitals set forth above constitute an integral part of this EASEMENT and are incorporated herein by reference.

TO HAVE AND TO HOLD the land and premises above described and mentioned for a Perpetual Stream Restoration Easement unto the proper use and benefit of the State of Maryland, to the use of the State Highway Administration of the Maryland Department of Transportation, its successors and assigns forever subject to the rights, easements privileges and controls herein mentioned. The covenants agreed to and the terms, conditions, and restrictions imposed as aforesaid shall be binding upon GRANTOR, and its

successors and assigns, and all other successo	rs to them in interest.
WITNESS the due execution of this EASEMI	ENT on the day and year first above writt
Pqw <if an="" attest:<="" entity="" grantor="" is="" th="" this="" type="" use=""><th>of signature block: GRANTOR:</th></if>	of signature block: GRANTOR:
By: _	Name:
"	Title:

Qt 'P qwg< If GR WITNESS:	ANTOR is an individual use this type of signature block: GRANTOR:
WIINESS.	GRANTOR.
	Name:
State of Maryland, O	County of
MARYLAND, in ar satisfactorily prover	FY that, before me, the undersigned officer, a NOTARY PUBLIC of the STATE OF and for the County aforesaid, personally appeared, known to me, or a to be the person whose name is subscribed to this EASEMENT, who signed the same in my wledged that he/she executed the same for the purposes therein contained and in the capacity
AS WITNESS MY	HAND AND NOTARIAL SEAL, this day of in the year
	Notary Public
My Commission exp	
	FY that this instrument has been prepared by or under the supervision of the undersigned, an practice before the Court of Appeals of Maryland.
	Assistant Attorney General
Please return to:	Maryland Department of Transportation State Highway Administration Director, Office of Environmental Design Mail Stop C-303 707 North Calvert Street Baltimore, MD 21202

n/oag/environ/easement/conservationeasement/6-21-17

Cabin Branch Stream and Wetland Restoration Design Report

Cabin Branch and Unnamed Tributaries Montgomery County, Maryland

Appendix H: 2/10/100-Yr Shear Stress and 2/10/100-Yr Velocity Tables

2, 10 AND 100 YEAR SHEAR AND VELOCITY COMPARISON

For the Stability Justification for Velocity, a "Stable Velocity" is anything less than 8 LF/S, anything showing a "Decrease" is a location where the proposed velocity is lower than the existing velocity, "No Change" is where the proposed velocity did not change from the existing velocity, anywhere showing "Minor Increase" is within 10% of the existing velocity, and anywhere that calls out Coir 700 Matting is a location where the higher velocity will be stable because of the 12 LF/S that Coir 700 Matting can withstand, thus the velocity will not create a detrimental effect to the channel.

For the Stability Justification for Shear, a "Stable Shear Value" is values that are greater than 10% of the existing shear but less than 2.0 LB/SF and is thus stable with the use of Coir 400 Matting which can withstand shear up to 3.0 LB/SF, anything showing a "Decrease" is a location where the proposed shear is lower than the existing shear, "No Change" is where the proposed shear stress did not change from the existing shear stress, and anywhere showing "Minor Increase" is within 10% of the existing shear.

	T	EXIST	ING		1		H		1	PROPO	JOED	r	I	T	COMPA	
River	Reach	River Sta	Profile	Q Total (cfs)	Vel Chnl (ft/s)	Shear Chan (lb/sq ft)		River	Reach	River Sta	Profile	Q Total (cfs)	Vel Chnl (ft/s)	Shear Chan (lb/sq ft)	Shear Stability Justification	Velocity Stability Justification
Fairway Island Trib	T4	2112.28	2YR	132.4	6.42	1.4		Fairway Island Trib	T4	2044.8	2YR	132.4	7.91	1.93	Stable Shear Value	Stable Velocity
Fairway Island Trib	T4	2112.28	10YR	228.6	7.73	1.85		Fairway Island Trib	T4	2044.8	10YR	228.6	8.86	2.29	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	2112.28	100YR	370.6	9.06	2.34		Fairway Island Trib	T4	2044.8	100YR	370.6	9.77	2.66	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1897.05	2YR	132.4	7.6	1.96		Fairway Island Trib	T4	1837.98	2YR	132.4	8.36	2.2	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1897.05	10YR	228.6	8.83	2.45		Fairway Island Trib	T4	1837.98	10YR	228.6	9.43	2.59	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1897.05	100YR	370.6	5.92	0.89		Fairway Island Trib	T4	1837.98	100YR	370.6	10.47	2.97	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1700.6	2YR	132.4	5.49	0.86		Fairway Island Trib	T4	1655.81	2YR	132.4	6.75	1.33	Stable Shear Value	Stable Velocity
Fairway Island Trib	T4	1700.6	10YR	228.6	6.73	1.22		Fairway Island Trib	T4	1655.81	10YR	228.6	7.33	1.45	Stable Shear Value	Stable Velocity
Fairway Island Trib	T4	1700.6	100YR	370.6	9.46	2.35		Fairway Island Trib	T4	1655.81	100YR	370.6	8.55	1.86	Decrease	Decrease
Fairway Island Trib	T4	1567.59	2YR	132.4	7.13	1.58		Fairway Island Trib	T4	1514.24	2YR	132.4	8.72	2.39	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1567.59	10YR	228.6	8.02	1.85		Fairway Island Trib	T4	1514.24	10YR	228.6	10.59	3.31	Coir 700 Matting	Coir 700 Matting
Fairway Island Trib	T4	1567.59	100YR	370.6	8.43	1.83		Fairway Island Trib	T4	1514.24	100YR	370.6	11.75	3.79	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R1	6716.3	2YR	1106.9	7.21	1.19		Cabin Branch	R1	6379.02	2YR	1106.9	6.84	1.07	Decrease	Decrease
Cabin Branch	R1	6716.3	10YR	2192.5	6.72	0.95		Cabin Branch	R1	6379.02	10YR	2192.5	8.07	1.4	Stable Shear Value	Coir 700 Matting
Cabin Branch	R1	6716.3	100YR	4215.6	6.59	0.84		Cabin Branch	R1	6379.02	100YR	4215.6	10.19	2.13	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R1	6414.25	2YR	1106.9	6.78	1.08	_	Cabin Branch	R1	6124.71	2YR	1106.9	2.85	0.19	Decrease	Decrease
Cabin Branch	R1	6414.25	10YR	2192.5	7.46	1.22		Cabin Branch	R1	6124.71	10YR	2192.5	3.21	0.19	Decrease	Decrease
Cabin Branch	R1	6414.25	100YR	4215.6	8.96	1.63	_	Cabin Branch	R1	6124.71	100YR	4215.6	4.37	0.39	Decrease	Decrease
						1.05	-		R1					1.65		
Cabin Branch	R1	6074.52	2YR	1106.9	7.05			Cabin Branch		5783.17	2YR	1106.9	8.65		Stable Shear Value	Coir 700 Matting
Cabin Branch	R1	6074.52	10YR	2192.5	8.59	1.45		Cabin Branch	R1	5783.17	10YR	2192.5	8.97	1.59	Stable Shear Value	Coir 700 Matting
Cabin Branch	R1	6074.52	100YR	4215.6	10.35	1.99	H	Cabin Branch	R1	5783.17	100YR	4215.6	10.94	2.24	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R1	5738.14	2YR	1106.9	10.56	2.67	H	Cabin Branch	R1	5447.84	2YR	1106.9	6.5	1.17	Decrease	Decrease
Cabin Branch	R1	5738.14	10YR	2192.5	11.97	3.22		Cabin Branch	R1	5447.84	10YR	2192.5	6.08	0.87	Decrease	Decrease
Cabin Branch	R1	5738.14	100YR	4215.6	8.51	1.41		Cabin Branch	R1	5447.84	100YR	4215.6	6.56	0.89	Decrease	Decrease
Cabin Branch	R1	5295.94	2YR	1106.9	5.3	0.59		Cabin Branch	R1	4996.42	2YR	1106.9	4.67	0.46	Decrease	Decrease
Cabin Branch	R1	5295.94	10YR	2192.5	5.86	0.66		Cabin Branch	R1	4996.42	10YR	2192.5	5.84	0.66	No Change	Decrease
Cabin Branch	R1	5295.94	100YR	4215.6	7.42	1		Cabin Branch	R1	4996.42	100YR	4215.6	7.58	1.03	Stable Shear Value	Stable Velocity
Cabin Branch	R1	4901.12	2YR	1106.9	9.58	2.02		Cabin Branch	R1	4612.7	2YR	1106.9	8.62	1.63	Decrease	Decrease
Cabin Branch	R1	4901.12	10YR	2192.5	9.87	1.86		Cabin Branch	R1	4612.7	10YR	2192.5	9.49	1.79	Decrease	Decrease
Cabin Branch	R1	4901.12	100YR	4215.6	11.13	2.2		Cabin Branch	R1	4612.7	100YR	4215.6	11.18	2.32	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R1	4507.96	2YR	1106.9	8.34	1.58		Cabin Branch	R1	4222.05	2YR	1106.9	8.52	1.75	Stable Shear Value	Coir 700 Matting
Cabin Branch	R1	4507.96	10YR	2192.5	12.7	3.62		Cabin Branch	R1	4222.05	10YR	2192.5	12.24	3.42	Decrease	Decrease
Cabin Branch	R1	4507.96	100YR	4215.6	6.22	0.71		Cabin Branch	R1	4222.05	100YR	4215.6	6.46	0.79	Stable Shear Value	Stable Velocity
Cabin Branch	R1	4211.67	2YR	1106.9	2.49	0.13		Cabin Branch	R1	3905.14	2YR	1106.9	3.49	0.26	Stable Shear Value	Stable Velocity
Cabin Branch	R1	4211.67	10YR	2192.5	3.27	0.21		Cabin Branch	R1	3905.14	10YR	2192.5	3.85	0.29	Stable Shear Value	Stable Velocity
Cabin Branch	R1	4211.67	100YR	4215.6	2.82	0.14		Cabin Branch	R1	3905.14	100YR	4215.6	3.07	0.16	Stable Shear Value	Stable Velocity
Cabin Branch	R1	3835.96	2YR	1106.9	3.05	0.18		Cabin Branch	R1	3520.98	2YR	1106.9	2.98	0.17	Decrease	Decrease
Cabin Branch	R1	3835.96	10YR	2192.5	4.15	0.32		Cabin Branch	R1	3520.98	10YR	2192.5	4.09	0.31	Decrease	Decrease
Cabin Branch	R1	3835.96	100YR	4215.6	4.45	0.33		Cabin Branch	R1	3520.98	100YR	4215.6	4.38	0.32	Decrease	Decrease
Cabin Branch	R1	3811.77	2YR	1106.9	6.48	1.39		Cabin Branch	R1	3496.28	2YR	1106.9	6.5	1.37	Decrease	Stable Velocity
Cabin Branch	R1	3811.77	10YR	2192.5	5.38	0.75		Cabin Branch	R1	3496.28	10YR	2192.5	5.8	0.86	Stable Shear Value	Stable Velocity
Cabin Branch	R1	3811.77	100YR	4215.6	4.26	0.36		Cabin Branch	R1	3496.28	100YR	4215.6	4.73	0.44	Stable Shear Value	Stable Velocity
Cabin Branch	R1	3700		Culvert				Cabin Branch	R1	3370		Culvert			No Change	No Change
Cabin Branch	R1	3660.55	2YR	1106.9	4.36	0.55		Cabin Branch	R1	3345.43	2YR	1106.9	4.42	0.55	No Change	Stable Velocity
Cabin Branch	R1	3660.55	10YR	2192.5	4.46	0.48		Cabin Branch	R1	3345.43	10YR	2192.5	4.59	0.5	Stable Shear Value	Stable Velocity
Cabin Branch	R1	3660.55	100YR	4215.6	8.99	1.96		Cabin Branch	R1	3345.43	100YR	4215.6	8.4	1.64	Decrease	Decrease
Cabin Branch	R1	3647.79	2YR	1106.9	8.08	1.61		Cabin Branch	R1	3332.38	2YR	1106.9	7.54	1.24	Decrease	Decrease
Cabin Branch	R1	3647.79	10YR	2192.5	11.08	2.79		Cabin Branch	R1	3332.38	10YR	2192.5	10.87	2.43	Decrease	Decrease
Cabin Branch	R1	3647.79	100YR	4215.6	10.18	2.1		Cabin Branch	R1	3332.38	100YR	4215.6	10.88	2.23	Coir 700 Matting	Coir 700 Matting
	1															
Cabin Branch	R2	3326.87	2YR	1155.2	9.53	2.07	_	Cabin Branch	R2	3006.19	2YR	1155.2	8.07	1.47	Decrease	Decrease
Cabin Branch	R2	3326.87	10YR	2276.3	11.01	2.56		Cabin Branch	R2	3006.19	10YR	2276.3	9.02	1.7	Decrease	Decrease
Cabin Branch	R2	3326.87	100YR	4364.6	11.61	2.66		Cabin Branch	R2	3006.19	100YR	4364.6	9.67	1.82	Decrease	Decrease
Cabin Branch	R2	2988.4	2YR	1155.2	10.34	2.62		Cabin Branch	R2	2679.03	2YR	1155.2	7.15	1.15	Decrease	Decrease
Cabin Branch	R2	2988.4	10YR	2276.3	9.83	1.98		Cabin Branch	R2	2679.03	10YR	2276.3	9.07	1.76	Decrease	Decrease
Cabin Branch	R2	2988.4	100YR	4364.6	10.74	2.19		Cabin Branch	R2	2679.03	100YR	4364.6	11.61	2.75	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R2	2583.32	2YR	1155.2	2.41	0.14		Cabin Branch	R2	2244.79	2YR	1155.2	4.42	0.44	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2583.32	10YR	2276.3	3.23	0.23		Cabin Branch	R2	2244.79	10YR	2276.3	5.72	0.69	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2583.32			4.71	0.45		Cabin Branch	R2	2244.79	100YR		6.75	0.89	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2296.95	2YR	1155.2	3.56	0.27		Cabin Branch	R2	1956.53	2YR	1155.2	7.39	1.21	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2296.95	10YR	2276.3	4.14	0.34		Cabin Branch	R2	1956.53	10YR	2276.3	6.77	0.93	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2296.95	100YR	4364.6	5.05	0.47		Cabin Branch	R2	1956.53	100YR	4364.6	6.91	0.89	Stable Shear Value	Stable Velocity
Cabin Branch	R2	2053.69	2YR	1155.2	8.85	1.82		Cabin Branch	R2	1714.55	2YR	1155.2	8.71	1.7	Decrease	Decrease
Cabin Branch	R2	2053.69	10YR	2276.3	9.38	1.82		Cabin Branch	R2	1714.55	10YR	2276.3	9.68	1.88	Stable Shear Value	Coir 700 Matting
Cabin Branch	R2	2053.69	100YR	4364.6	11.43	2.52		Cabin Branch	R2	1714.55	100YR	4364.6	11.73	2.58	Coir 700 Matting	Coir 700 Matting
Cabin Branch	R2	1563.85	2YR	1155.2	1.19	0.03		Cabin Branch	R2	1268.3	2YR	1155.2	3.07	0.21	Stable Shear Value	Stable Velocity
Cabin Branch	R2	1563.85	10YR	2276.3	1.63	0.05		Cabin Branch	R2	1268.3	10YR	2276.3	2.82	0.16	Stable Shear Value	Stable Velocity
Cabin Branch	R2	1563.85	100YR	4364.6	1.77	0.05		Cabin Branch	R2	1268.3	100YR	4364.6	2.44	0.1	Stable Shear Value	Stable Velocity
Cabin Branch	R2	1316.79	2YR	1155.2	6.92	1.08		Cabin Branch	R2	1066.4	2YR	1155.2	8.77	1.68	Stable Shear Value	Coir 700 Matting
Cabin Branch	R2	1316.79	10YR	2276.3	6.06	0.71		Cabin Branch	R2	1066.4	10YR	2276.3	6.79	0.86	Stable Shear Value	Stable Velocity
Cabin Branch	R2	1316.79	100YR	4364.6	4.99	0.42		Cabin Branch	R2	1066.4	100YR	4364.6	5.4	0.48	Stable Shear Value	Stable Velocity
Cabin Branch	R2	1207.8	2YR	1155.2	9.91	2.21		Cabin Branch	R2	954	2YR	1155.2	8.22	1.45	Decrease	Decrease
Cabin Branch	R2	1207.8	10YR	2276.3	11.24	2.46		Cabin Branch	R2	954	10YR	2276.3	10.35	2.05	Decrease	Decrease
Cabin Branch	R2	1207.8	100YR	4364.6	13.34	3.08		Cabin Branch	R2	954	100YR	4364.6	12.85	2.83	Decrease	Decrease
							F									
Clubside Trib	T5	1395.38	2YR	78.82	5.74	1.15		Clubside Trib	T5	1571.29	2YR	78.82	5.06	0.97	Decrease	Decrease
Clubside Trib	T5	1395.38	10YR	142.25	6.7	1.42		Clubside Trib	T5	1571.29	10YR	142.25	6.02	1.23	Decrease	Decrease
Clubside Trib	T5	1395.38	100YR	275.54	7.51	1.69		Clubside Trib	T5	1571.29	100YR	275.54	7.22	1.57	Decrease	Decrease
	TE	1170.79	2YR	78.82	7.86	2.44		Clubside Trib	T5	1334.68	2YR	78.82	5.47	1.07	Decrease	Decrease
Clubside Trib	T5	11/0./3							_							
Clubside Trib Clubside Trib	T5	1170.79	10YR	142.25	9.79	3.48		Clubside Trib	T5	1334.68	10YR	142.25	6.27	1.32	Decrease	Decrease

LATITUDE: N 39° 10' 43" LONGITUDE: W 77° 12' 08"

RFP-2 CABIN BRANCH STREAM RESTORATION AND WETLAND MITIGATION PHASE II MONTGOMERY COUNTY, MARYLAND

AERIAL PHOTOGRAPH-PROJECT OVERVIEW

PROJECT SUMMARY

RFP - 2 CABIN BRANCH STREAM AND WETLAND MITIGATION PROJECT

THE CABIN BRANCH PROJECT WILL RESTORE APPROXIMATELY 7,983 LINEAR FEET OF STREAM, CREATE APPROXIMATELY 4.40 ACRES OF FORESTED NON-TIDAL WETLANDS, AND ENHANCE APPROXIMATELY 11.67 ACRES OF NON-TIDAL WETLAND AND RIPARIAN BUFFERS. THE PROJECT IS WITHIN THE MIDDLE POTOMAC - CATOCTIN WATERSHED (FEDERAL 8-DIGIT HUC 02070008) AND LOCATED AT 19550 MONTGOMERY VILLAGE DRIVE GAITHERSBURG, MD. CABIN BRANCH AND ITS ASSOCIATED TRIBUTARIES ARE CLASSIFIED AS USE I-P STREAM. ALL WETLAND, STREAM, AND BUFFER COMPONENTS WILL BE FULLY INTEGRATED TO PROVIDE THE GREATEST FUNCTIONAL UPLIFT WHILE GENERATING PERMITTEE RESPONSIBLE COMPENSATORY MITIGATION CREDITS FOR THE I-495 \$ I-270 MANAGED LANES STUDY.

THE PROJECT IS LOCATED ON A FORMER GOLF COURSE AND THE STREAM AND ADJACENT RIPARIAN AREAS EXHIBIT EXTENSIVE PERTURBATION AS A RESULT OF PAST LAND USE PRACTICES AND INCREASED WATERSHED URBANIZATION. SITE IMPACTS INCLUDE CHANNEL MODIFICATIONS, UTILITY ENCROACHMENT, STREAM PIPING, IMPOUNDMENT, CHANNELIZATION, BANK ARMORING, CHANNEL BLOCKAGES, AND ANTHROPOGENIC GRADING ASSOCIATED WITH HISTORIC GOLF COURSE INFRASTRUCTURE. AS A RESULT, CABIN BRANCH IS HIGHLY INCISED AND EXHIBITS MINIMAL FLOODPLAIN CONNECTION EXCEPT DURING LARGE FLOOD EVENTS. LOSS OF VERTICAL AND LATERAL STABILITY, COMBINED WITH HISTORIC LAND USE IMPACTS, PROVIDES AN OPPORTUNITY TO GENERATE SIGNIFICANT ECOLOGICAL UPLIFT THROUGH LARGE SCALE, MULTI-FEATURE RESTORATION IN A HIGHLY URBANIZED AREA. THE PROJECT ALSO PROPOSES DAYLIGHTING AND CREATION OF NATURAL STREAM CHANNELS FOR OVER 2,300 LINEAR FEET OF CURRENTLY PIPED WATER COURSES. HISTORIC LAND USE CHANGES HAVE ALSO HAD SIGNIFICANT IMPACTS TO THE STREAM VALLEY AND WHAT WOULD HAVE BEEN FORESTED FLOODPLAIN COMPLEXES. THE CREATION OF WATER HAZARDS AND AMENITY PONDS, IN COMBINATION WITH STREAM CHANNEL INCISION, INSTALLATION OF SUBSURFACE DRAINAGES, AND GOLF COURSE GRADING HAS ELIMINATED ALMOST ALL WETLANDS WITHIN THE PROJECT SITE. AS A RESULT OF THIS MITIGATION PROJECT, SIX OPEN WATER PONDS WILL BE CONVERTED TO NON-TIDAL FORESTED WETLANDS THAT WILL PROVIDE SIGNIFICANT ECOLOGICAL AND SYSTEM WIDE IMPROVEMENTS, ELIMINATE THERMAL POLLUTION, AND OTHER IMPORTANT CO-BENEFITS TO THE SITE AND WATERSHED.

STREAM DESIGN OBJECTIVES INCLUDE CREATION OF A SELF-SUSTAINING PLANFORM, CROSS-SECTION, AND PROFILE UTILIZING NATURAL CHANNEL DESIGN. THE DESIGN INCORPORATES PRIORITY II AND III RESTORATION THAT INCLUDES CHANNEL RELOCATION AND INCREASES IN BED ELEVATION TO ENSURE FUNCTIONING BANK HEIGHT AND ENTRENCHMENT RATIOS THAT WILL INCREASE FLOODPLAIN CONNECTIVITY TO EITHER THE EXISTING FLOODPLAIN OR PROPOSED FLOODPLAIN BENCHES. WOODY AND OTHER HABITAT STRUCTURES WILL BE UTILIZED TO FURTHER PROMOTE STABILITY WHILE INCREASING ECOLOGICAL UPLIFT. RIFFLE/POOL FEATURES HAVE BEEN DESIGNED TO MAINTAIN BEDFORM DIVERSITY, PROMOTE MACROINVERTEBRATE AND FISH HABITAT, AS WELL AS INCREASE HYPORHEIC EXCHANGE. THIS RESTORATION DESIGN WILL RESULT IN EIGHT FUNCTIONAL ASSESSMENT CATEGORIES CURRENTLY NON-FUNCTIONING OR FUNCTIONING AT RISK AND RESTORE THEM TO FUNCTIONING.

WETLAND DESIGN OBJECTIVES INCLUDE THE CONVERSION OF OPEN WATER PONDS TO FORESTED NON-TIDAL WETLANDS. THE EXISTING PONDS WILL BE FILLED WITH SUITABLE SOIL TO THE APPROPRIATE ELEVATION NECESSARY TO ENSURE WETLAND HYDROLOGY. ALL SUBSURFACE AND OTHER DRAINAGE FEATURES WILL BE DISCONNECTED AND VEGETATION WILL BE PLANTED BASED ON REFERENCE WETLANDS IN PROXIMITY TO THE PROJECT SITE. IN ADDITION TO GROUND WATER HYDROLOGY THE PROPOSED WETLANDS HAVE BEEN INTEGRATED INTO THE STREAM DESIGN AND WILL RECEIVE FLOOD INPUTS AT LARGER THAN BANKFULL EVENTS. THIS WETLAND/STREAM INTEGRATION PROVIDES THE GREATEST OVERALL BENEFIT TO THE SYSTEM.

SHEET INDEX:

I - COVER SHEET

2 - NOTES / NARRATIVE

3 - DRAINAGE AREA MAPS

4 - EXISTING CONDITIONS KEY SHEET

5 - 16 - EXISTING CONDITIONS

17 - MITIGATION MASTER PLAN

18 - DESIGN KEY SHEET

19 - 37 - STREAM GRADING PLANS & PROFILES

38 - 42 - WETLAND GRADING PLANS & PROFILES

43 - 46 - TYPICAL STREAM DETAILS

47 - PLANTING NOTES AND DETAILS

48 - 49 - PLANTING PLAN

50 - 51 - MONITORING PLAN

FEMA FIRMETTE

GRAPHIC SCALE: 1" = 2000'

Pratherto

2000'

4000'

GOOO'

FROJECT LOCATION

Steyrapt

Alony FROMER

VILLAGE

Strywbern (fig.)

Profit

REFERENCE FEMA MAP: 24031C0187D

APPLICANT/AGENT:
NAME: HGS, LLC A RES COMPANY
ADDRESS: 5367 TELEPHONE ROAD
WARRENTON, VIRGINIA 20187

PROPERTY OWNER #1:

NAME: USL2 MR MONT VILLAGE BUSINESS TR ADDRESS: 19550 MONTGOMERY VILLAGE AVE. GAITHERSBURG, MD 20886

ZONING: TLD, CRN-0.55

ACREAGE: 111.87

PROPERTY OWNER #2:

NAME: POTOMAC ELECTRIC POWER CO ADDRESS: C/O CORP TAX DEPT, STE 5617

701 9TH ST NW

WASHINGTON, DC 20068

ZONING: R-200 ACREAGE: 16.52

PROFESSIONAL CERTIFICATION.

I HEREBY CERTIFY THAT THESE DOCUMENTS
WERE PREPARED OR APPROVED BY ME, AND
THAT I AM A DULY LICENSED PROFESSIONAL
ENGINEER UNDER THE LAWS OF THE STATE
OF MARYLAND, LICENSE NO. 52852,
EXPIRATION DATE: 6/14/2022

NOT FOR CONSTRUCTION

PROJECT STATUS							
DATE	DESCRIPTION						
6/26/2020	CONCEPT PLAN						
11/9/2020	65% MITIGATION PLAN						
2/15/2021	65% MITIGATION PLAN REV.						
9/3/2021	65% MITIGATION PLAN REV. 2						

RFP-2 CABIN BRANCH								
PROJECT MANAGER:		JOB NUMBER:						
	RC		PRJ102054					
DESIGNED:		DESIGN TYPE:						
	BW/SS/JC		404 MITIGATION					
DRAWN:		PLAN DATE:						
	JC		11/22/2021					
	N							

HGS, LLC - A RES COMPANY

5367 TELEPHONE ROAD, WARRENTON, VIRGINIA 20187 P: 703.393.4844 | F: 703.393.2934 WWW.RES.US

CREDIT SUMMARY

ACTIVITY	LINEAR FEET (LF) ACREAGE (AC)	CREDIT RATIO	CREDIT	STREAM GAINS (FUNCTIONAL FEET)
STREAM RESTORATION	7,173 LF	1:1	7,173	5,149
STREAM RESTORATION (PEPCO PROPERTY)	810 LF	1:1	810	433
WETLAND RESTORATION (PFO)	4.38	1:1	4.38	_
WETLAND ENHANCEMENT	0.06	4:1	0.01	
WETLAND BUFFER ENHANCEMENT	2.45	15:1	0.16	-
TOTAL WETLAND CREDIT			4.55	-
RIPARIAN BUFFER (35 FOOT BUFFER)	8.27 AC			-
PIPAPIAN BLIFFER ENHANCEMENT	0.93.40	15.1	0.06	

FOR ALL WORK WITHIN THE LIMITS OF THE PARCELS OWNED BY POTOMAC ELECTRIC POWER COMPANY THE FOLLOWING NOTES SHALL APPLY:

GRANTOR's PROPERTIES Workspace Notes

- A. Notify GRANTOR at least seventy-two (72) hours prior to start of work on GRANTOR's PROPERTIES. Notify GRANTOR again at the completion of work. Failure to notify GRANTOR may trigger a stop work order.
- B. Remove all construction debris from GRANTOR's PROPERTIES at the completion of the work.
- C. Stabilize all disturbed areas by grading, seeding and/or mulching.

BEST MANAGEMENT PRACTICES FOR WORKING IN NONTIDAL WETLANDS, WETLAND BUFFERS,

WATERWAYS, AND 100-YEAR FLOODPLAINS

- I. NO EXCESS FILL, CONSTRUCTION MATERIAL, OR DEBRIS SHALL BE STOCKPILED OR STORED IN NONTIDAL WETLANDS, NONTIDAL WETLAND BUFFERS, WATERWAYS, OR THE 100-YEAR FLOODPLAIN.
- 2.PLACE MATERIALS IN A LOCATION AND MANNER WHICH DOES NOT ADVERSELY IMPACT SURFACE OR SUBSURFACE WATER FLOW INTO OR OUT OF NONTIDAL WETLANDS, NONTIDAL WETLAND BUFFERS, WATERWAYS, OR THE 100-YEAR FLOODPLAIN.
- 3.DO NOT USE THE EXCAVATED MATERIAL AS BACKFILL IF IT CONTAINS WASTE METAL PRODUCTS, UNSIGHTLY DEBRIS, TOXIC MATERIAL, OR ANY OTHER DELETERIOUS SUBSTANCE. IF ADDITIONAL BACKFILL IS REQUIRED, USE CLEAN MATERIALS FREE OF WASTE METAL PRODUCTS, UNSIGHTLY DEBRIS, TOXIC MATERIAL, OR ANY OTHER DELETERIOUS SUBSTANCE.
- 4.PLACE HEAVY EQUIPMENT ON MATS OR SUITABLY OPERATE THE EQUIPMENT TO PREVENT DAMAGE TO NONTIDAL WETLANDS, NONTIDAL WETLAND BUFFERS, WATERWAYS, OR THE 100-YEAR FLOODPLAIN.
- 5.REPAIR AND MAINTAIN ANY SERVICEABLE STRUCTURE OR FILL SO THERE IS NO PERMANENT LOSS OF NONTIDAL WETLANDS, NONTIDAL WETLAND BUFFERS, OR WATERWAYS, OR PERMANENT MODIFICATION OF THE 100-YEAR FLOODPLAIN IN EXCESS OF THAT LOST UNDER THE ORIGINALLY AUTHORIZED STRUCTURE OR FILL.
- G.RECTIFY ANY NONTIDAL WETLANDS, WETLAND BUFFERS, WATERWAYS, OR 100-YEAR FLOODPLAIN TEMPORARILY IMPACTED BY ANY
- 7.ALL STABILIZATION IN THE NONTIDAL WETLAND AND NONTIDAL WETLAND BUFFER SHALL CONSIST OF THE FOLLOWING SPECIES:
- ANNUAL RYEGRASS (LOLIUM MULTIFLORUM), MILLET (SETARIA ITALICA), BARLEY (HORDEUM SP.), OATS (UNIOLA SP.) AND/OR RYE (SECALE CEREALE). THESE SPECIES WILL ALLOW FOR THE STABILIZATION OF THE SITE WHILE ALSO ALLOWING FOR THE VOLUNTARY REVEGETATION OF NATURAL WETLAND SPECIES. OTHER NON-PERSISTENT VEGETATION MAY BE ACCEPTABLE, BUT MUST BE APPROVED BY THE NONTIDAL WETLANDS AND WATERWAYS DIVISION. KENTUCKY 3 I FESCUE SHALL NOT BE UTILIZED IN WETLAND OR BUFFER AREAS. THE AREA SHOULD BE SEEDED AND MULCHED TO REDUCE EROSION AFTER CONSTRUCTION ACTIVITIES HAVE BEEN COMPLETED.
- 8.AFTER INSTALLATION HAS BEEN COMPLETED, MAKE POST CONSTRUCTION GRADES AND ELEVATIONS THE SAME AS THE ORIGINAL GRADES AND ELEVATIONS IN TEMPORARILY IMPACTED AREAS.
- 9.TO PROTECT AQUATIC SPECIES, IN-STREAM WORK IS PROHIBITED AS DETERMINED BY THE CLASSIFICATION OF THE STREAM:
- A. USE I WATERS (WITHOUT YELLOW PERCH): IN-STREAM WORK SHALL NOT BE CONDUCTED DURING THE PERIOD MARCH I THROUGH JUNE 15, INCLUSIVE DURING ANY YEAR.
- B. USE I WATERS (WITH YELLOW PERCH): IN-STREAM WORK SHALL NOT BE CONDUCTED DURING THE PERIOD FEBRUARY 15 THROUGH JUNE 15, INCLUSIVE DURING ANY YEAR.
- C. USE III WATERS: IN-STREAM WORK SHALL NOT BE CONDUCTED DURING THE PERIOD OCTOBER I THORUGH APRIL 30, INCLUSIVE, DURING ANY YEAR
- D. USE IV WATERS: IN-STREAM WORK SHALL NOT BE CONDUCTED DURING THE PERIOD MARCH I THROUGH MAY 3 I, INCLUSIVE, DURING ANY
- I O. STORMWATER RUNOFF FROM IMPERVIOUS SURFACES SHALL BE CONTROLLED TO PREVENT THE WASHING OF DEBRIS INTO THE WATERWAY.
- I I. CULVERTS SHALL BE CONSTRUCTED AND ANY RIPRAP PLACED SO AS NOT TO OBSTRUCT THE MOVEMENT OF AQUATIC SPECIES, UNLESS THE PURPOSE OF THE ACTIVITY IS TO IMPOUND WATER.

WETLAND CONSTRUCTION NOTES

CONSTRUCTION.

- NOTE: SEE ESC PLANS FOR THE COMPLETE SEQUENCE OF CONSTRUCTION.
 - ALL WETLAND CONSTRUCTION MUST BE COMPLETED "IN THE DRY."
 - ALL UPSTREAM STORMWATER INFLOWS MUST BE DISCONNECTED.
 - THE EXISTING CLAY BOTTOM OF POND SHALL BE RIPPED TO THE DEPTH NECESSARY TO RESTORE FREE GROUNDWATER MOVEMENT; THE WETLAND DESIGNER SHALL APPROVE PRIOR TO FILLING WITHIN THE PROPOSED WETLAND.
 - FILL POND BOTTOM WITH SOIL SALVAGED FROM ON SITE TO ACHIEVE SUBGRADE ELEVATIONS 6" BELOW FINAL GRADE ELEVATION IN THE WETLAND PLANTING ZONES. ALL OTHER AREAS TO BE FILLED/EXCAVATED AND GRADED TO FINAL ELEVATIONS.
 - ASBUILT OF THE WETLAND CELLS SHALL BE BASED ON THE SUBGRADE ELEVATION. ONCE THE FINAL SUBGRADE HAS BEEN APPROVED
 - BY THE WETLAND DESIGNER FINAL SURFACE PREPARATION MAY BEGIN.

 6" OF CLASS A TOPSOIL SHALL BE SPREAD ACROSS THE WETLAND PLANTING ZONES TO ACHIEVE FINAL GRADE. ONLY LOW-GROUND
 - PRESSURE EQUIPMENT TO BE USED TO SPREAD TOPSOIL.
 - SPREAD ORGANIC COMPOST ON SURFACE OF WETLAND CELL AT A QUANTITY OF 60 CY PER ACRE, AND INCORPORATE INTO THE SOIL TO A MINIMUM DEPTH OF 8" BY DISKING OR RIPPING, USING ONLY LOW GROUND PRESSURE EQUIPMENT.
 - THE SPREADING OF THE TOP SOIL & DISKING OF THE ORGANIC COMPOST SHALL CREATE THE MICROTOPOGRAPHY WITHIN THE WETLAND CELL.
 - PLACE LARGE WOODY DEBRIS IN THE WETLAND CELL AS SHOWN IN THE DESIGN PLANS.
 - IF CONSTRUCTION IS COMPLETED OUTSIDE OF THE RECOMMENDED PLANTING SEASON, ALL AREAS OF DISTURBED SOIL ARE TO BE SEEDED WITH TEMPORARY SEED MIXES SPECIFIED IN THE PLANTING PLANS. NO SEEDING OF THE PERMANENT WETLAND SEED MIX OR PLANTING OF THE WETLAND PLANTS SHALL BE CONDUCTED UNTIL THE APPROPRIATE SEASON, AS APPROVED BY THE WETLAND DESIGNER.
 - WETLAND PLANTING AND PERMANENT SEEDING NOTES AND DETAILS ARE INCLUDED IN THE DESIGN PLANS.

PERFORM STREAM RESTORATION OPERATION:

- NOTE:SEE ESC PLANS FOR THE COMPLETE SEQUENCE OF CONSTRUCTION.

 - WHEN POSSIBLE NEW SEGMENTS OF CHANNEL SHALL BE CONSTRUCTED OFF-LINE AND STREAM FLOW MAINTAINED IN THE ORIGINAL STREAM CHANNEL WHILE THE PROPOSED CHANNEL IS BEING CONSTRUCTED. THE PROPOSED STREAM CHANNEL MUST BE GRADED, SEEDED AND MATTED TO CONTROL EROSION PRIOR TO INTRODUCTION OF FLOW INTO THE PROPOSED CHANNEL.
 - TOP SOIL SHOULD BE SALVAGED AND STOCKPILED AS POSSIBLE FOR REUSE ACROSS THE DISTURBED STREAM BANKS & RIPARIAN AREAS.
 - INSTALLATION OF STRUCTURES (LOG OR ROCK): USING LOGS (SALVAGED FROM SITE CLEARING IF AVAILABLE) OR ROCKS INSTALL THE STRUCTURES PER THE PLANS, ENSURING THAT THE TOP OF THE LOG/HEADER ROCK EXPOSED IN THE CHANNEL IS EVEN WITH THE INVERT OF THE STREAM CHANNEL.
 - ONLY AFTER THE ENTIRE STREAM CHANNEL (OR SECTION) HAS BEEN CONSTRUCTED AND STABILIZED, AND ALL TIE-INS COMPLETED MAY THE PROPOSED CHANNEL BE OPENED TO STREAM FLOW.
 - FLOODPLAIN GRADING CAN HAPPEN CONCURRENTLY WITH STREAM CHANNEL CONSTRUCTION OR BE STAGGERED.

CONSTRUCTION NOTES:

- I. ALL EXISTING UNDERGROUND UTILITIES SHALL BE PHYSICALLY LOCATED BY THE CONTRACTOR PRIOR TO THE BEGINNING OF ANY CONSTRUCTION IN THE VICINITY OF THESE UTILITIES. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING WITH UTILITY COMPANIES FOR THE RELOCATION OF SERVICES/UTILITIES IF REQUIRED.
- 2. THE DEVELOPER IS RESPONSIBLE FOR ANY DAMAGE TO EXISTING ROADS AND UTILITIES WHICH OCCUR AS A RESULT OF PROJECT CONSTRUCTION WITHIN OR CONTIGUOUS TO EXISTING RIGHT-OF-WAY.
- 3. STREET SURFACES SHALL BE MAINTAINED IN A CLEANED CONDITION, MUD AND DUST FREE AT ALL TIMES. ADEQUATE MEANS SHALL BE PROVIDED TO CLEAN TRUCKS AND OTHER EQUIPMENT USING THE COMPLETED STREETS.
- 4. ALL MATERIALS AND CONSTRUCTION WITHIN THE MDSHA RIGHT-OF-WAY WILL CONFORM TO CURRENT SPECIFICATIONS AND STANDARDS OF THE MARYLAND STATE HIGHWAY ADMINISTRATION.
- 5. LAND CONSERVATION NOTES:
 - A.) STABILIZATION PRACTICES ON ALL PROJECTS MUST BE IN COMPLIANCE WITH THE REQUIREMENTS OF COMAR 26.17.1.08 g REGULATIONS BY JANUARY 9, 2013, REGARDLESS OF WHEN AN EROSION AND SEDIMENT CONTROL PLAN WAS APPROVED.
 - B.) FOLLOWING INITIAL SOIL DISTURBANCE OR RE-DISTURBANCE, PERMANENT OR TEMPORARY STABILIZATION MUST BE COMPLETED WITHIN: THREE (3) CALENDAR DAYS AS TO THE SURFACE OF ALL PERIMETER DIKES, SWALES, DITCHES, PERIMETER SLOPES, AND ALL SLOPES STEEPER THAN 3 HORIZONTAL TO 1 VERTICAL (3:1), AND SEVEN (7) CALENDAR DAYS AS TO ALL OTHER DISTURBED OR GRADED AREAS ON THE PROJECT SITE NOT UNDER ACTIVE GRADING.
- G. ALL FILL, BASE AND SUBBASE MATERIAL SHALL BE COMPACTED WITH TRACKED OR MECHANICAL EQUIPMENT TO THE ENGINEERS APPROVAL.
- 7. THE MARYLAND DEPARTMENT OF THE ENVIRONMENT (MDE), IN ACCORDANCE WITH THE CLEAN WATER ACT AS AMENDED AND PURSUANT TO THE STATE WATER CONTROL LAW AND REGULATIONS, REQUIRES CONSTRUCTION SITE OPERATORS SECURE, OR WILL SECURE, BY INDICATING PROOF OF APPLICATION, A NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES. CONSTRUCTION ACTIVITIES INCLUDE, CLEARING, GRADING AND EXCAVATING WHICH RESULTS IN LAND DISTURBANCE EQUAL TO OR GREATER THAN ONE (I) ACRE. IN ORDER TO ENSURE COMPLIANCE WITH THE MDE PERMITTING REQUIREMENT, ALL APPLICATIONS FOR GRADING PERMITS WITHIN MONTGOMERY COUNTY, SUBJECT TO CRITERIA AS PREVIOUSLY DESCRIBED, SHALL BE REQUIRED TO PROVIDE RECEIPT OF PROOF THAT CONSTRUCTION SITE OPERATORS HAVE SECURED OR WILL SECURE A NPDES CONSTRUCTION PERMIT PRIOR TO THE ISSUANCE OF THE GRADING PERMIT.
- 8. THE APPROVAL OF THESE PLANS SHALL IN NO WAY RELIEVE THE OWNER OF COMPLYING WITH OTHER APPLICABLE LOCAL, STATE AND FEDERAL REQUIREMENTS.
- 9. EMERGENCY VEHICLE ACCESS SHALL BE PROVIDED DURING ALL PHASES OF CONSTRUCTION.

NOTICE REQUIRED:

CONTRACTORS SHALL NOTIFY OPERATORS WHO MAINTAIN UNDERGROUND UTILITY LINES IN THE AREA OF PROPOSED EXCAVATION AND/OR BLASTING AT LEAST TWO (2) WORKING DAYS, BUT NOT MORE THAN TEN (10) WORKING DAYS PRIOR TO COMMENCEMENT OF EXCAVATION OR DEMOLITION. NAMES AND TELEPHONE NUMBERS OF THE OPERATORS OF UNDERGROUND UTILITY LINES APPEAR BELOW. THESE NUMBERS SHALL ALSO BE USED TO SERVE IN AN EMERGENCY CONDITION.

PEPCO 202-833-7500

WASHINGTON GAS 703-750-1400

WASHINGTON SUBURBAN SANITARY COMMISSION 301-206-4001

MISS UTILITY 811 OR 800-552-7001

EMERGENCY

POLICE: 911 OR 301-258-6400 FIRE \$ RESCUE: 911 OR 240-773-4708

GENERAL NOTES:

- I. THE PURPOSE OF THIS PROJECT IS TO CREATE A PERMITTEE RESPONSIBLE COMPENSATORY BANK FOR THE I-270/495 EXPANSION.
- 2. THE PROPERTY SHOWN HEREON IS RECORDED IN THE NAME OF:

PARCEL NUMBER OWNER

00772244 USL2 MR MONT VILLAGE BUSINESS TR

00775420 POTOMAC ELECTRIC POWER CO
00775407 POTOMAC ELECTRIC POWER CO

- ACCORDING TO MONTGOMERY COUNTY ASSESSMENTS, THE PARCELS TOTAL IS 128.39 ACRES.
 THIS PROPERTY IS CURRENTLY ZONED RESIDENTIAL TOWNHOUSE LOW DENSITY (TLD), COMMERCIAL
- 4. THIS PROPERTY IS CURRENTLY ZONED RESIDENTIAL TOWNHOUSE LOW DENSITY (TLD), COMMERCIA RESIDENTIAL NEIGHBORHOOD (CRN) OR RESIDENTIAL-200 (R-200).
- 5. THE BOUNDARY INFORMATION SHOWN HEREON WAS PREPARED WITHOUT THE BENEFIT OF A TITLE SEARCH OR PROPERTY BOUNDARY SURVEY, BASED ON AVAILABLE ONLINE GIS DATA.
- 6. THE PROPOSED USE OF THE PROPERTY FORESTED OPEN SPACE/MITIGATION.
- 7. TOPOGRAPHIC INFORMATION SHOWN HEREON WAS ACQUIRED BY AMT ENGINEERING. CONTOUR INTERVAL IS 1 FOOT. SEE SURVEY NOTES.
- 8. SOILS INFORMATION IS BASED ON THE USDA WEB SOIL SURVEYS DATABASE CURRENT DATA FOR MONTGOMERY COUNTY.
- 9. THE PROPERTY SHOWN HEREON IS WITHIN A 100-YEAR FLOODPLAIN; FEMA ZONE AE.
- 10. THE PROPERTY SHOWN HEREON HAS NO ARCHEOLOGICAL OR HISTORIC FEATURES AS INCLUDED IN THE STATE OR NATIONAL REGISTER OF HISTORIC PLACES.
- II. ALL CONSTRUCTION SHALL CONFORM TO CURRENT MONTGOMERY COUNTY AND MARYLAND STATE HIGHWAY ADMINISTRATION STANDARDS AND SPECIFICATIONS OR APPROVED MODIFICATIONS.
- 12. SEDIMENT AND EROSION CONTROL WILL BE PROVIDED IN ACCORDANCE WITH THE 2011 MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL.
- 13. THE WETLAND DELINEATION SHOWN HEREON WAS PERFORMED BY RES IN SEPTEMBER 2020.
- 14. ALL WETLAND DELINEATIONS, PERMITS AND MITIGATION PLANS SHALL BE OBTAINED AND EVIDENCE OF SUCH BE PROVIDED TO THE COUNTY PRIOR TO LAND DISTURBANCE.
- 15. THESE STREAMS ARE DESIGNATED USE CLASS IP (WATER CONTACT RECREATION, PROTECTION OF AQUATIC LIFE, AND PUBLIC WATER SUPPLY) WATERS (WITHOUT YELLOW PERCH): IN-STREAM WORK SHALL NOT BE CONDUCTED DURING THE PERIOD MARCH | THROUGH JUNE | 15, INCLUSIVE DURING ANY YEAR.

SURVEY NOTES:

- I. HORIZONTAL DATUM: MARYLAND STATE PLANE NAD 83/2011
- 2. VERTICAL DATUM: NAVD 88 BASED ON RTK GPS OBSERVATIONS.
- NO UNDERGROUND UTILITY DESIGNATION PROCEDURES WERE PERFORMED. UTILITIES SHOWN ARE FROM VISIBLE SURFACE EVIDENCE AND AVAILABLE RECORDS. SEWER INVERTS LABELED (DATR) ARE FROM WSSC RECORDS CONVERTED TO NAVD88 WITH AVERAGED RATE AND SHOULD BE CONSIDERED APPROXIMATE.
- 4. NO PROPERTY OR BOUNDARY SURVEY PROCEDURES WERE PERFORMED AS PART OF THIS SURVEY.

		BENCHMARK DATA
NO	ELEV	DESCRIPTION
	378.41	X-CUT ON SEWER MANHOLE RIM
2	372.11	MAG-NAIL IN POWER POLE
3	368.51	SQUARE CUT ON CORNER OF CONCRETE STEP
4	363.74	MAG-NAIL IN RETAINING WALL SUPPORT POLE
5	356.59	X-CUT ON SEWER MANHOLE RIM
6	351.32	SQUARE CUT ON CORNER OF CONCRETE EBOX PEDESTAL
7	352.28	X-CUT ON SEWER MANHOLE RIM
8	361.62	X-CUT ON SEWER MANHOLE RIM
9	365.67	X-CUT ON SEWER MANHOLE RIM

	TRAVERSE DATA								
NO	NORTHING	EASTING	ELEV	DESCRIPTION					
1	549612.8806	1256904.0739	371.55	REBAR ≉ CAP					
2	549911.6583	1256877.3961	369.15	REBAR ≉ CAP					
3	550185.5116	1256545.3493	368.74	REBAR \$ CAP					
4	550194.5612	1256244.7026	368.13	REBAR \$ CAP					
5	550385.9432	1255901.0124	364.51	REBAR \$ CAP					
6	550518.4884	1255106.4533	358.29	MAG-NAIL					
7	550750.7908	1254861.5025	357.77	REBAR \$ CAP					
8	550700.2689	1254462.5964	357.82	REBAR \$ CAP					
9	550943.2640	1254205.0051	354.21	REBAR \$ CAP					
10	551145.2060	1254008.3981	353.40	REBAR & CAP					
11	551011.3964	1253706.0437	351.66	REBAR & CAP					
12	551030.2872	1254946.3786	360.33	REBAR \$ CAP					
301	549375.3780	1257258.6468	373.65	REBAR & CAP					
302	549389.6357	1257027.6904	376.40	REBAR \$ CAP					
303	550381.6582	1255510.6750	363.73	REBAR \$ CAP					
304	550527.3286	1255303.3564	362.62	REBAR & CAP					
305	551124.9972	1253417.3228	348.69	REBAR & CAP					
306	550991.0591	1252983.5044	349.90	REBAR \$ CAP					

NOTES

PROFESSIONAL CERTIFICATION
HEREBY CERTIFY THAT THESE
DOCUMENTS WERE PREPARED OR
APPROVED BY ME, AND THAT I AM A
DULY LICENSED PROFESSIONAL
ENGINEER UNDER THE LAWS OF THE
STATE OF MARYLAND.
LICENSE#:52852
EXP. DATE:6/14/2022

NOT FOR CONSTRUCTION

REVISIONS:

PROJECT STATUS:
6/26/2020 CONCEPT PLAN
1 1/9/2020 65% MIT. PLAN
2/15/2021 65% MIT. PLAN REV. 2
9/3/2021 65% MIT. PLAN REV. 2
1 1/22/2021 65% MIT. PLAN REV. 3
3/10/2022 65% MIT. PLAN REV. 2

PROJECT MANAGER: RC
DESIGNED: BW/JC
DRAWN: JC
JOB NUMBER: 102054
DESIGN TYPE: STREAM

2 OF 5

STREAM

WASHINGTON

SUBURBAN

SANITARY

COMMISSION

	STRUCTURE	TABLE
	RIEFLE STONE DEPTH, D	MIN. GRADE CONTROL STONE SIZE (L, W, H)
REAC WI	TH FINAL	DESIGN -

RIF	FLE MIX	1
MATERIAL	SIZE (D50)	PERCENT
ROCK	.2"	15
ROCK	1.5"	40
ROCK	5"	40
ROCK	8.5"	10
SOIL/SAND		

RIFFLE MIX 2								
MATERIAL	SIZE (D50)	PERCENT						
ROCK	.2"	15						
ROCK	1.5"	40						
ROCK	3"	40						
ROCK	6"	10						
SOIL/SAND								

CONSTRUCTED RIFFLE
NOT TO SCALE

*NOTE: SEE CROSS-SECTION GEOMETRY TABLE FOR CHANNEL DIMENSIONS AND SLOPES.

PROFESSIONAL CERTIFICATION
HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND. LICENSE#:52852 EXP. DATE:<u>6/14/2</u>022

CONCEPT PLAN 11/9/2020 65% MIT. PLAN 2/15/2021 65% MIT. PLAN REV. 9/3/2021 65% MIT. PLAN REV. 2 11/22/2021 65% MIT. PLAN REV. 3 3/10/2022 65% MIT. PLAN REV. 4

OB NUMBER: STREAM

45 OF 51

2. USE NONWOVEN GEOTEXTILE AS SPECIFIED IN SECTION H-1 MATERIALS, AND PROTECT FROM PUNCHING, CUTTING, OR TEARING. REPAIR ANY DAMAGE OTHER THAN AN OCCASIONAL SMALL HOLE BY PLACING ANOTHER PIECE OF GEOTEXTILE OVER THE DAMAGED PART OR BY COMPLETELY REPLACING THE GEOTEXTILE. PROVIDE A MINIMUM OF ONE FOOT OVERLAP FOR ALL REPAIRS AND FOR JOINING TWO PIECES OF GEOTEXTILE.

- PREPARE THE SUBGRADE FOR THE PLUNGE POOL TO THE REQUIRED LINES AND GRADES. COMPACT ANY FILL REQUIRED IN THE SUBGRADE TO A DENSITY OF APPROXIMATELY THAT OF THE SURROUNDING UNDISTURBED MATERIAL.
- 4. EMBED THE GEOTEXTILE A MINIMUM OF 4 INCHES AND EXTEND THE GEOTEXTILE A MINIMUM OF 6 INCHES BEYOND THE EDGE OF THE SCOUR HOLE.
- STONE FOR THE PLUNGE POOL MAY BE PLACED BY EQUIPMENT. CONSTRUCT TO THE FULL COURSE THICKNESS IN ONE OPERATION AND IN SUCH A MANNER AS TO AVOID DISPLACEMENT OF UNDERLYING MATERIALS. DELIVER AND PLACE THE STONE FOR THE PLUNGE POOL IN A MANNER THAT WILL ENSURE THAT IT IS REASONABLY HOMOGENEOUS WITH THE SMALLER STONES AND SPALLS FILLING THE VOIDS BETWEEN THE LARGER STONES. PLACE STONE FOR THE PLUNGE POOL IN A MANNER TO PREVENT DAMAGE TO THE GEOTEXTILE. HAND PLACE TO THE EXTENT NECESSARY.
- 6. AT THE PLUNGE POOL OUTLET, PLACE THE STONE SO THAT IT MEETS THE EXISTING GRADE.
- MAINTAIN LINE, GRADE, AND CROSS SECTION. KEEP OUTLET FREE OF EROSION. REMOVE ACCUMULATED SEDIMENT AND DEBRIS. AFTER HIGH FLOWS INSPECT FOR SCOUR AND DISLODGED RIPRAP. MAKE NECESSARY REPAIRS IMMEDIATELY.

MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL MARYLAND DEPARTMENT OF ENVIRONMENT WATER MANAGEMENT ADMINISTRATION U.S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE

	ļ	1	<u></u>		Type 1	Plunge Po	ool			
Tributary	TW (ft)	Plunge Pool Width, B, (ft)	Plunge Pool Length, C, (ft)	Min. D50- Type 1 (ft)	Min. D50- Type 1 (in)	Stone Size (Refer Table H.2)	Rip Rap Depth- Type 1 (2xD50) (in)	Plunge Pool Bottom Length (ft)	Plunge Pool Bottom Width (ft)	Plunge Pool Depth-F (ft)
T1-1	2.8	17.5	21.0	0.9	11.3	Class II	32	10.5	7.0	1.8
T1A	1.2	7.5	9.0	0.1	1.2	Number 1	5	4.5	3.0	0.8
T2	1.6	10.0	12.0	0.3	4.0	Rip Rap	11	6.0	4.0	1.0
T3A	1.4	8.8	10.5	0.1	1.2	Number 1	5	5.3	3.5	0.9
T3-1	2	12.5	15.0	0.3	3.9	Rip Rap	11	7.5	5.0	1.3
T4-1	2.2	13.8	16.5	0.5	5.6	Class I	19	8.3	5.5	1.4
T5	2.4	15.0	18.0	0.5	5.6	Class I	19	9.0	6.0	1.5

	R:F	FLE CROS	5-SEC	TON (GEOMETRY		
PE-2+		05 TESL (5) 0755551T0 507700006 EST (7 = 1.5 21771: 27 - 27		6-061751_05 0=56577070705 0=54087 =1	FF-2 E4**F * 7** **	2.===_£
- <u>-</u>	: 1-1113	=			3.5	ેં દં	,
- 5		<u>-</u>			<u>.</u>	ž ÷	
	: J-533-	÷	- 5	7.5		÷	
- -	[-::-::	2.55	-	7.55		: <u>-</u>	
- <u>:</u> -	; ;-:: :-TE	-		_	≟ ∄	.	
7.5.5	; 	÷	=	: :::=	÷	£	
-3-		-]		=	
	- 2- 5-25	_==	Ξ	ΞΞ	: :	=	
T=E	; ; +:5.22 +	Ξ	f <u>-</u>	<u> </u>	=	1.4	
				<u> </u>	=	3. 5	
Ŧŧ	:-:: :-::	-		ī		- =	

RIFFLE CROSS-SECTION GEOMETRY

	Γ	RIFF	LE (W/	INNE	R BERM) C	ROSS-	SECTION	GEOMETR	RY.	Γ	
REACH	STATION	A-CENTERLINE OFFSET TO BOTTOM OF BANK (FT)	RIFFLE BOTTOM WIDTH (FT)	MAX RIFFLE DEPTH* (FT)	B-CENTERLINE OFFSET TO TOP OF BANK (FT)	RIFFLE BANKFUL L WIDTH (FT)	C-CENTERLINE OFFSET TO INSIDE OF BERM (FT)	D-CENTERLINE OFFSET TO OUTSIDE OF BERM (FT)	E-HEIGHT TO BERM FROM RIFFLE BOTTOM (FT)		G-RIFFLE STONE DEPTH (FT)
	10+00-39+00	6	12	2.3	11.6	23.2	8.6	9.6	1.3	l l	
2	40+56-64+00	7	14	2.4	12.8	25.6	9.8	10.8	1.4	l	

*REACH PROFILE DATA SHALL BE USED TO DETERMINE DEPTH AT SPECIFIC STATIONS.

RIFFLE (W/ INNER BERM) CROSS-SECTION GEOMETRY NOT TO SCALE

	i	OCL CRO	35-5	ECT'C4	GEOMET	RY.	
PF2 () -	57-7 L	4-05 TBML 6 - 05765TT0 - 3-1T0 - 05 - 0-154 BH *	FT:1 B:TT:1 :TT	17 70 D. 0977- -	2 (2 TEML 6 (FF25TT) TUR (F 2F E- *		#7.1_ 8-
		: ÷	ī ?			1.3	2
- <u>-</u>	:-:::-	7.9	_ = =			3.5	
		: =	_ -		3 5	<u>.</u>	<u></u>
	_ 1-111	Ī-	Ī-	: ::	= =		1.5
^ <u>:</u> =			Ξ Ξ	1 51	ž <u>-</u>		≣ €
7.5.5	1-18- 1-88	: €	: :		<i>3.</i> €	<u>:</u>	= :
~ .	1-11g	: £	- £	1.51	<i>Ξ</i> Ξ	.i≢	<i>=.</i> =
=	0- 5-05		_ = =		Ξ ±		÷
5	3-13-11-	: =	::		- <u>-</u>	3.5	- ·
	1-11 -1	: <u>:</u>	_ = =	:::	<u>-</u> -	F	- :
- <u>-</u> -	1-11- E-B1	: €	15	:. <u>=:</u>	<i>5</i>	_ E	€3

*REACH PROFILE DATA SHALL BE USED TO DETERMINE DEPTH AT SPECIFIC STATIONS.

— POOL BANKFULL WIDTH ——

POOL CROSS-SECTION GEOMETRY

MAX POOL ORIENTATION: FACING DOWNSTREAM POOL BOTTOM WIDTH

- CENTERLINE

GRADING

REACH	STATION	A-CENTERLINE OFFSET TO BOTTOM OF BANK (FT)	POOL BOTTO M WIDTH (FT)	B-HEIGHT TO POINT BAR FROM POOL BOTTOM (FT)	C-HEIGHT TO TOP OF INNER BANK FROM POINT BAR (FT)	MAX POOL DEPT H (FT)	D-CENTERLINE OFFSET TO TOP OF INNER BANK (FT)	E-CENTERLINE OFFSET TO POINT BAR (FT)	F-CENTERLINE OFFSET TO TOP OF OUTER BANK (FT)	POOL BKF WIDTH (FT)
1	10+00-39+00	3.0	3.0	3.3	1.0	4.3	16.3	9.6	11.6	27.9
2	40+56-64+00	3.6	3.6	3.6	1.0	4.6	17.9	10.8	12.8	30.7

*REACH PROFILE DATA SHALL BE USED TO DETERMINE DEPTH AT SPECIFIC STATIONS.

GRADING

POOL (POINT BAR) CROSS-SECTION GEOMETRY

ROFESSIONAL CERTIFICATION HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL NGINEER UNDER THE LAWS OF THE STATE OF MARYLAND. LICENSE#:52852 EXP. DATE:<u>6/14/2</u>022

NOT FOR CONSTRUCTION

DEVICIONO	
REVISIONS	:
<u> </u>	

PROJECT STA	ATUS:
6/26/2020	CONCEPT PLAI
11/9/2020	65% MIT. PLAN
2/15/2021	65% MIT. PLAN REV
9/3/2021	65% MIT. PLAN REV.
11/22/2021	65% MIT. PLAN REV.
3/10/2022	65% MIT. PLAN REV.

46 OF 5

LARGE WOODY DEBRIS PLACEMENT NOTES:

- . LARGE WOODY DEBRIS SHALL BE USED FOR ENHANCEMENT OF HABITAT WITHIN THE WETLAND CELLS. THE WOODY DEBRIS WILL PROVIDE SUNNING AREAS FOR REPTILES AND AMPHIBIANS, LOAFING SITES FOR WATERFOWL AND WADING BIRDS, ADDITIONAL VERTICAL AND HORIZONTAL HABITAT, AND SUBSTRATE FOR INVERTEBRATES.
- 2. LARGE WOODY DEBRIS ENHANCEMENTS SHALL CONSIST OF CLEARED OR CUT TREES TAKEN FROM AREAS ON SITE THAT HAVE TO BE CLEARED FOR CONSTRUCTION. TREES USED FOR LARGE WOODY DEBRIS ENHANCEMENT SHALL HAVE A TRUNK DIAMETER OF 6" OR LARGER, AND THE MAIN PART OF THE TRUNK SHALL BE AT LEAST 12 FEET LONG. WOODY DEBRIS WITH ROOT BALLS ATTACHED ARE PREFERRED, HOWEVER SAW-CUT TREES ARE ACCEPTABLE.
- 3. LARGE WOODY DEBRIS PLACEMENT
- a. WHEN PLACED, THE MAIN TRUNK OF THE TREE SHALL POINT INWARDS FROM THE CELL PERIMETER, SO THAT WITH CHANGING WATER LEVELS, THE TREE WILL PROVIDE LOAFING AREAS FOR WILDLIFE MOST OF THE TIME.
- b. THE ROOT WAD OR TRUNK BASE SHOULD ORIGINATE ON THE WETLAND BUFFER EDGE AND THE TRUNK SHOULD BE POINTED TOWARDS THE CENTER OF THE CELL.
- c. DEPENDING ON THE SIZE OF THE WETLAND CELL, MULTIPLE PIECES OF LARGE WOODY DEBRIS WILL BE REQUIRED. FOR THE TWO CELLS SIZED BETWEEN 0.25 AND 0.5 ACRES, TWO PIECES OF LARGE WOODY DEBRIS WILL BE PLACED IN EACH CELL. FOR THE THREE CELLS SIZED GREATER THAN I ACRE, THREE PIECES OF LARGE WOODY DEBRIS WILL BE PLACED IN EACH CELL.

PLANTING BARE-ROOTED SEEDLINGS

CARE OF SEEDLINGS UNTIL PLANTED

SEEDLINGS SHOULD BE PLANTED IMMEDIATELY, IF IT IS NECESSARY TO STORE MOSS PACKED SEEDLINGS FOR MORE THAN 2 WEEKS, ONE PINT OF WATER PER PKG. SHOULD BE

ADDED. IF CLAY-TREATED, DO NOT ADD WATER TO PKG.

TO PREVENT "HEATING". SEPARATE PACKAGES WITH WOOD STRIPS AND STORE

SEEDLINGS IN A CONTAINER PACKED WITH WET MOSS OR FILLED WITH THICK

MUDDY WATER. COVER CLAY-TREATED SEEDLINGS WITH WET BURLAP ONLY.

OUT OF THE WIND IN A SHADED, COOL (NOT FREEZING) LOCATION.

HAND PLANTING

PACKAGES MUST BE SEPERATED TO PROVIDE VENTILATION

CARE OF SEEDLINGS DURING PLANTING

WHEN PLANTING, ROOTS MUST BE KEPT MOIST UNTIL TREES ARE IN THE GROUND. DO NOT CARRY SEEDLINGS IN YOUR

HAND EXPOSED TO THE AIR AND SUN. KEEP MOSS-PACKED

ALWAYS PLANT IN

SOIL - NEVER

OR DEBRIS.

PACK SOIL

TIGHTLY.

LOOSE LEAVES

	<u>UPLAND</u>	TREE PLA	NTING	• -		
ACRES	0.24					
PLANTS PER ACRE	750					
TOTAL PLANTS	185					
SCIENTIFIC NAME	COMMON HAME	INDICATOR STATUS	5:25	STOCK	Ę	GUASTITY
	Ĺ	CANOPY (80%)				
. 1008/07/10/08/5		F±,00	<i>5- 2</i>	5aranon	<i>5</i> -7-	25
Siercie nord	indramier ar	F=C_	<i>5</i> - <i>5</i>	Eareroot		
Pacarita dipplatenta la	ĝ usmore	F4J7.	<i>3- 2</i>	5arenooo		=-
Carpa grante	Paris no an	F4.J7.	<i>5</i> • <i>≦</i> *	Earence:	Ţ- -	
Роспа и зе цасатаса	Saor colat	==;;	<i>5</i> ∙ <i>≦</i>	Earthor:	2=7	<u> </u>
uşu sansar eti rapifila	Sileetgiim	=:	<i>3</i> • <i>2</i> •	Istator:	<i>5</i> - 3	-
G.etc.eusu	Profession	F=C_	5- <u>2</u>	Eartest	<i>£</i> -:	-
Aden resultad	Energr	F	<i>5</i> - <i>2</i>	Sareross	<i>5</i> -3	-
Azer bizom	Ped madie	F± J	<i>5- 21</i>	Earent to	5.5	~
	UNDER	STORYSHRUB (20%)			
Profile eerooms	Elapi ore n t	F., J.	<i>5</i> • <i>2</i> *	Eareroo:		=:
Carole coroxerele	Esstern reskula	_=_	<i>3</i> • <i>2</i> •	Ēgreros:	<u>-</u>	-
Pr. n.e smenosna	Amencan eur	F-1,J-1	<i>\$</i> - <i>\$</i>	Esteroso	7.7	
	-			-	:00%	†ô5

	WETLAND) TREE PL	ANT//	<u> 1G</u>		
ACRES	4.49					
FLANTS PER ACRE	750					
TOTAL FLANTS	3.300					
SCIENTIFIC NAME	CONTROL VAIVE	WOIGHTOR STATUS	3:ZE	STOCK	3	GUANTIT
	G.	440FY (80%)			-	
Roam rays, ray	toese	-: J	<i>5</i> ∙ £*			-::: <u>:</u>
-25-15-	Feb Table	F2.5	<i>-</i> f <u>-</u> <u>-</u> <u>-</u> <u>-</u> -	53-2-22	<i>-</i>	تيتين
Pararue cookerta e	Ej dandra	F-J	<i>5-</i> £	577-11	<i>‡-</i> 5-	-::: <u>:</u> :
Setua nara	Faran	F;;	<i>5</i> ∙ £	in in the second	: ====	- EE.
Glatola sa Latha	Fr Os	F;	<i>5</i> - <i>≦</i> -	_E ereross	: : :=:	
Fox. La sa colata		**;	5- £	Serentet		· ==:
Aden espaennom	E ser mare	F:	5. <u>1</u> .	Eartroon	<i>=</i> -:	£.5
	94 <i>05</i> 85	TORYSHRUE	(20%)			
Jesma artrué duo derta é	£.5557.55	.:ē.	<i>5</i> ∙ <i>£</i> ⁻	Sateros:	.^-=	===
Sa vinisa	Sapring:		. -	Bararasa		<i>:::</i>
-					199#	3,300

	RIPARIAN	I TREE PL	ANTII	<u>VG</u>			And Kynnerik "minter Verthould ikner tonik er den
ICRES	:5.68						Contract towards
LANTS PER ACRE	750						1 1/1 91 / 6 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1
OTAL PLANTS	(1,770						the the trape of the period
SCIENTIFIC NAME	COMMON NAME	MDICATOR STATUS	3725	stock	3	GUANTITY	Landra to the second of the se
	۵	4NOPY (75%)					<u> </u>
igranue pod denta e	jājustore	F4.Z.	5- 2	jāre to sa	27.3	£.550	
icen nepunat	Strese:	== <u>-</u>	.5- <u>≥</u> `	Sirect:	5:3	. - 55	K/
	Teamane	=: [53181227	7.7	- =	
,.531 E. 157 CF	jā an kir		5. Z	jārene:	.7:5	~£	ACMIN
lietue me se	1 5 5ak	택ᢔ:	5. 2		Ĵ.	. – <i>=</i>	TOTAL MARKET
en a nya		÷.∵.	.5. <u>2</u>		<i>3-</i>	<i>553</i>	TOTAL TOTANIA
a, sampar espresióna	î azij. T	₹.ĵ	5 3		<i>:</i>	53.°	2011 N111 R N
Lettle tiera	"Lo tirem realizac	F4J.	5. 2		<i>5</i>	595	
liertie valetre	er ja	F4.J.:	5. 3	ās erere	<i>-</i>	590	
	UNDERS	ТОХ ҚІЗНХИВ	(25%)				r triban antibusin Eitak dasar
	5 q. 804008	닫고.	5. E	Jumpaca.	£-5	££5	Llymner engineerer
್ಯಾಪ್ರಚಿಕ್ಷ ಪ್ರಾಗ	Estation and	F4.J.	<i>5</i> - ≥	วัสราชาวา	£-5.	<i>353</i>	i karak termun xayansan
5.707 557552.*	Epiteren arro il cos	루고:	.5. <u>≥</u> `	jarana.	<i>5-</i> 7		thus inn englithm
							i '

WYAND IZANIING DEED MIX Ar. All in / **-/** TYDDAYALLY ALACAY TOTAL POPINIT 10 INDUCATON: COMMARK MANAM 24 7/ N7// R 1 NAM/ 20/8///20 (ip,mp=n_f/07/90/) "1 1 "11 1 .11 11 Manuel in minimizer na jina i 11 ilai irga , h. , el. Little Physidem 11111 's hear Bringh roog enight 11111 7.7.195 115.1. 11. 16.16.16.1 11.11 1.1.11. though programmed that they be 1 14 x 19 1 x 1 11 1 1 1 1 1 11 // 11 1 11 11 Trade years me program pro-140 5 401 6 5 1 16 5 Antonia Desity in 11111 . 1 . "! digita edini ya ni amenini t verteelt eigenver (i Schlich) Down to a root of horse to the Hate 1. 11718. 1. 1. 1. 1. 1. 1.11 /1 11 11767257967 1.1. 1.10% s mai hetsseger 1446 . 1, 11 . . 146 16 16 1 1 11 // 1.164 Mydrair ardich e 11111 dia kymmignik i

Markey and Some

i ng i ikkumil

1 9000 00 2 96 5 1 1 11 1 1 5 5 6

Aborn mb of About mount

11. 11/1 101.9

Kistle Clarithital

A. A. ymaa , waraan de

the distriction of the arm weather.

No results mounts mutolisms

der, ryskinger

11111

1.11

1 1. 11

1 11 11

1.100

1 1 1 1 1 1 1 1

1.60%

1.1.1011

1 1 . " ()

1041.036

11161,1114

POUNDO PEN ACRE POUNT POUNDO	7.1.1		
FRETT NETT IN THE NAME	C'CANACAN NAAM	INDICATON TOTATIO	96
	Broken and the April 1818 1911		
t Kinnes (u. jime ies	1 10 pm 1 11 16 115	7 (4 1)	7111
Can A hankt	Link Charle	177	. 5 17 "
consectable	Brokett to the black	1 7 7	. 1 1, 1
C. 11 12 Co. 1 9 3 11 11 1	Mant Down and English	1.4.11	41.0
i may injania a kee	1.18 1.88 1.76	1 7 7	11.1.6
4 119 41 - 1 17 5 431111 -	The William	1 1 11	, 1, 9
hickory though	2001 150VI	10011	11, 9
	1.090.0.1.0090	'	
the depart for a consequent of the day of	Many of heart squally of the	/ 1/ //	11 111
An hymnenk "menter	the my (Atillace of	. " "	11.1.11
Controller than I hall be allowed	N. n. S. at h. am. e. l	1.11	1."
1. 18. 14. 14. 14. 14. 11. 1	[1865: Cont.	1.11.11	, ' , ''
1 d y y y y y y y y y y y y y y y y y y	More Inchination	1 10 11	, 1, 6
Somethings of the product	Orand hack at a rath hans set	7 11	1.1"
Circles from all Controller	200 C 110 W	1411	(1,0)
A tarrolino cracia con	Emporer Sammer Assats Montes	177	11, 9
•	'		1041.6

<i>K//:A</i>	KIA	M/:3	/K/	MM	/3AN	水 こ	5/:/	1:12 /	\// .\

. 1. 1. . 1 - 1

11.

TOTAL TOTAL	(1)111		
FRM MITTE NAME	C CMANACIN MANAI	MPRATOR	vy.
	Commence (1000 Miller		
Ch Ean ad taigh tatak daga	A A . V . L . M . C	1411	, " , , " },
Hymne engine in	Lastona Hakhy.	1.46 11	1901 19
rk mak twinin a cyanami	1 atta : 1 Mar airen	1 1. / 1	1.1.1%
time im viegatimi	Superingeres) / h	1 64,
Principal ichicheren	Kin H. y. Hinney hove	1 11 11	11 " (
Link its things	ling h to y	1.4.77	1, 1 " 1,
denvious grandina	Animum Desmenson	1.16.71	1 1 1 1 1 1
The test square	11.11/1.18/1.11	/ /	1100
	1. 10/10 1. 11/1/67	' '	
Chini wa redar bea weeld i	1 ndinkpodi i	1.00 77	11 1 " (
de . Lynne in annatet	Sur my Ablice t		111 "11
the min to the entry of	Wilder Strange	.] / //	11111
T , 48A 94A 7A 11 , Ý1 11; A , 41 4 .	Mar how morest	' ' ' '	1.10%
Historythics in produktions	Many of heat Counth of each	1 11 11	1.111
Act of the a to sugar to	Alone Ingland didin	1111	11 (1)
H. K. Burte autodosile	Continuent time of the continuent	1.4.11	1 10%
Ergstrensont Essas determ	7606569	10011	11/04

LATERAL BUD 3 OR 4 BUDS FLAT TOP END SHOULD BE PRESENT ABOVE GROUND WATER TABLE SPACING PER PLAN 45 DEGREE TAPERED **BUTT END** I. DO NOT INSTALL LIVE STAKES THAT HAVE BEEN SPLIT. 2. LIVE STAKES MUST BE INSTALLED WITH BUDS POINTING UPWARDS.

5. LIVE STAKES SHOULD BE INSTALLED LEAVING 4 TO 8 INCHES ABOVE GROUND.

3. LIVE STAKES SHOULD BE 1 TO 2 INCHES IN DIAMETER.

100% 11,770

LIVE STAKE INSTALLATION

6. LIVE STAKES SHOULD BE INSERTED AT A 45° ANGLE TO THE BANK AND POINTED DOWNSTREAM.

4. LIVE STAKES SHOULD BE LONG ENOUGH TO REACH BELOW THE GROUNDWATER TABLE (2 TO 3 FEET IN LENGTH).

PLANTING NOTES.

- PLANTS AND SEEDS SHALL BE OBTAINED FROM A COMMERCIAL SUPPLIER. THE CONTRACTOR SHALL MAKE ARRANGEMENTS WITH RELIABLE SOURCES TO ENSURE THAT AN ADEQUATE SUPPLY OF THE REQUIRED PLANT AND SEED MATERIALS IS AVAILABLE.
- 2. IN THE EVENT THAT A PLANT OR SEED SPECIFIED IS NOT COMMERCIALLY AVAILABLE, THE CONTRACTOR MAY REQUEST A SUBSTITUTION IN WRITING. ALL REQUESTS FOR SUBSTITUTIONS SHALL BE MADE AT LEAST I MONTH PRIOR TO INSTALLATION AND BE APPROVED BY THE ENGINEER OR THEIR ASSIGNED.
- ALL PLANT MATERIALS RECEIVED FROM COMMERCIAL SUPPLIERS SHALL CONFORM TO THE CURRENT ISSUE OF THE AMERICAN STANDARD FOR NURSERY STOCK, PUBLISHED BY THE AMERICAN ASSOCIATIONS OF NURSERYMEN.
- THE CONTRACTOR IS RESPONSIBLE FOR INSTALLING ALL PLANT MATERIAL IN THE APPROPRIATE SEASON FOR EACH TYPE OF STOCK. THE PLANTING SEASON FOR CONTAINER TREES, SHRUBS, TUBELINGS,BAREROOTS, CONTAINER SEEDLINGS, AND LIVE STAKES SHALL BE FROM NOVEMBER I THROUGH DECEMBER 15, AND FEBRUARY 15 THROUGH APRIL 1. LIVE STAKES AND BAREROOT TREES AND SHRUBS MUST BE INSTALLED IN THE DORMANT SEASON. ADJUSTMENTS TO THE PLANTING SEASONS MAY BE MADE BY THE ENGINEER BASED ON SEASONAL AND SITE CONDITIONS.
- ALL PLANT MATERIAL SHALL BE UNIFORMLY SHAPED AND HAVE A VIGOROUS ROOT SYSTEM. THE PLANT MATERIAL SHALL BE HEALTHY, AND FREE OF DEFECTS, DECAY, ABRASIONS OF THE BARK, PLANT DISEASE, INSECT PEST EGGS, AND ALL FORMS OF INFESTATIONS. THE PLANT MATERIALS MUST BE FRESH AND
- 6. ALL CONTAINER GROWN STOCK, INCLUDING PLUGS, SHALL HAVE BEEN PROPAGATED FOR A SUFFICIENT TIME FOR THE ROOTS TO HAVE DEVELOPED SUFFICIENTLY TO HOLD THE SOILS TOGETHER WHEN REMOVED FROM THE CONTAINER. CONTAINER STOCK WITH POORLY DEVELOPED ROOTS ARE UNACCEPTABLE AND WILL BE REJECTED.

FREE OF TRANSPLANT SHOCK OR VISIBLE WILT. UNHEALTHY PLANT STOCK ARE UNACCEPTABLE AND WILL BE REJECTED.

- 7. NO SEEDING OR PLANTING SHALL OCCUR WHEN THE SOIL IS FROZEN OR THE SITE IS FLOODED.
- 8. THE CONTRACTOR SHALL NOTIFY THE ENGINEER A MINIMUM OF 48 HOURS PRIOR TO THE COMMENCING OF PLANTING OR SEEDING OPERATIONS.
- 9. THE FINAL LOCATION OF PLANT MATERIAL, AS WELL AS LOCATION OF PLANTING ZONES, WILL BE SUBJECT TO THE APPROVAL OF THE ENGINEER. THE CONTRACTOR WILL BE RESPONSIBLE FOR THE REPLANTING OR RESEEDING ANY PLANT MATERIAL INSTALLED WITHOUT APPROVAL OF THE ENGINEER.
- 10. SPACING OF BAREROOT TREES WILL BE 7' ON-CENTER.
- II. THE PLANTING DENSITY IS DESIGNED FOR TYPICAL DIE-OFF AND HERBIVORY, IF EXCESSIVE DIE-OFF OR HERBIVORY IS NOTED DURING MONITORING, REPLANTING OF AFFECTED AREAS WILL BE REQUIRED.
- 12. THE BORDERS OF THE CONSERVATION AREA WILL BE MARKED WITH A METAL POST \$ SIGN A MINIMUM OF EVERY 50' DESIGNATING THE CONSERVATION

	STRE	AM BANK I	PLANTING	2		
(BELOW TOP OF BANK)						
LINEAR FEET OF BANK	17,506.0					
PLANTS PER LINEAR FOOT	0.4					
TOTAL PLANTS	7,000]				
SCIENTIFIC NAME	COMMON NAME	INDICATOR STATUS	SIZE	STOCK	%	QUANTITY
Salix nigra	Black Willow	OBL	2-3'	Livestakes	30%	2,100
Cornus amomum	Silky dogwood	FACW	2-3'	Livestakes	25%	1,750
Alnus serrulata	Smooth Alder	FACW	8-12"	Bareroot	20%	1,400
Cephalanthus occidentalis	Buttonbush	OBL	8-12"/2-3'	Bareroot/Livestakes	15%	1,050
Platanus occidentalis	Sycamore	FACW	8-12"	Bareroot	10%	700
					100%	7.000

			/ PERMANENT SEED	TING SUM	T	rtılızer Ra		
	Hardiness Zone (from							
	Seed Mixture (from	/	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10-20-20))	Lime Rate
No.	Species	Application Rate (lb/ac)	Seeding Dates	Seeding Depths	N	N P ₂ O ₅ K ₂ O		
	Switch Grass (<i>Panicum virgatum</i>)	10	March to May 15, August 5 to October 5	1/4-1/2 in	45 pounds			
1	Creeping Red Fescue (Festuca rubra var. rubra)	15	March to May 5, August 5 to October 5	1/4-1/2 in	per acre	90 lb/ac (2 lb/ 1 000 sf)	90 lb/ac (2 lb/ 1 000 sf)	2 tons/ ac (90 lb/ 1000 sf)
	Partridge Pea (<i>Chamaecrista fasciculata</i>)	4	March to May 5, August 5 to October 5	1/4-1/2 in	,			

SECTION A-A'

LIVE STAKE SPACING PLAN VIEW

NNER BEND SPACING
PER PLANTING TABLE

RIFFLE SPACING
PER PLANTING TABLE

COFESSIONAL CERTIFICATION HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR PPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL NGINEER UNDER THE LAWS OF THE STATE OF MARYLAND. LICENSE#:52852 EXP. DATE:<u>6/14/2</u>022

NOT FOR CONSTRUCTION

CONCEPT PLAN 65% MIT. PLAN 1/9/2020 /15/2021 65% MIT. PLAN REV 65% MIT. PLAN REV. 1/22/2021 65% MIT. PLAN REV. 3/10/2022 65% MIT. PLAN REV.

STREAM

47 OF 5

DO NOT BEND

THEY GROW

GROUND.

UPWARDS OUT

ROOTS SO THAT

MONITORING PLAN & REPORTS

AS-BUILT REPORT

An as-built report shall be submitted within 60 days of completion of mitigation activities. The asbuilt report shall include comparisons of the design plan to the as-built plan, using the following

- Plan view maps of the constructed wetlands, streams, and adjacent buffers that depict the Boundaries, as-built topography, all mitigation activities (including buffer activities), and the locations of all monitoring stations (photo stations, anticipated vegetation sampling plots, wetland monitoring wells, stream gages, cross-sections, longitudinal profiles, pattern and bank vegetation monitoring stations, etc.).
- As-built longitudinal profiles of stream reaches taken from permanent locations and overlaid with and compared to design longitudinal profiles.
- As-built cross-sections of stream reaches taken at permanent locations; overlaid with and compared to design cross-sections.
- Photographs of the completed construction taken at permanent photo stations.
- Summary of stream geomorphologic data presented in a side-by-side comparison of the
- design and as-built channels. Planting composition, overall locations, and densities.
- Revised credit totals and individual mitigation activities. Explain any differences in credits totals from design to as-built plans.

SUCCESS CRITERIA

- Hydrology: Visually classify stream flow (perennial, intermittent, ephemeral) during the first and final monitoring years. Stream flow is to meet or exceed baseline flow.
- <u>Lateral Stability</u>: The following parameters shall be used to evaluate lateral stability:
- a) The Bankfull stream Cross-Sectional Area shall not increase or decrease by an
- amount greater than 25% of the as-built stream cross-sectional area. b) The numbers of live stakes and woody stems of native tree and shrub species providing bank stabilization from the top of bank to the toe of slope shall be at least 1 living stem per 50 square feet per stream edge along the bank by the end of the first growing season following planting and maintained each monitoring year until canopy coverage is 30% for any identified reach. Canopy coverage shall be at least 30% each monitoring year thereafter. Data shall be collected adjacent to each cross-section.
- Vertical Stability: A longitudinal profile survey shall demonstrate <0.5' thalweg change from as-built riffle elevations.
- <u>Bedform Diversity:</u> The D50 size particle remains within the as-built size class (silt, sand, gravel, cobble, or boulder), or the D50 size particle remains within its design size class (silt, sand, gravel, cobble, or boulder).
- Habitat Assessment: (For perennial streams only) Using A Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers (RBP assessment), the Total Score of the Habitat Assessment for each reach shall be 100 or greater at Year 1, and each monitoring year thereafter the Total Score shall be equal to or greater than the previous monitoring year's Total Score.
- Structure Stability: Visual observations/photographs and written narrative shall demonstrate: a) Absence of collapsed structure or repositioned header rocks.

- determination, the growing season should be based on median dates (i.e., 50 percent probability) of 28°F air temperatures in spring and fall, based on the long-term data for the nearest appropriate weather station, as recorded in the WETS tables available from the NRCS (https://www.wcc.nrcs.usda.gov/climate/navigate wets.html), or as specified in the appropriate regional supplement to the Corps of Engineers Wetland Delineation Manual.
- Wetland Soils: The entire wetland restoration or creation area must meet the Hydric Soil Technical Standard (Technical Note 11) developed by the National Technical Committee for Hydric Soils for saturated conditions and anaerobic conditions:
 - a) Free water must exist within 10 inches (25 cm) of the ground surface for at least 14 consecutive days; and
 - b) Anaerobic conditions must exist within 10 inches (25 cm) of the ground surface for at least 14 consecutive days. Anaerobic conditions may be determined by one of the following methods, as detailed in the Hydric Soil Technical Standard:
 - (1) Positive reaction to alpha-alpha dipyridyl, determined as least weekly.
 - (2) Reduction of iron determined with IRIS devices (tubes or films) installed for 30 days.
 - (3) Measurement of redox potential (Eh) using platinum electrodes, determined

Buffer Area(s)

- Areal Cover Vegetative Standards: The minimum areal cover shall be vegetated by native species annually as described below:
 - a) Year 1: a minimum of 50%
 - b) Year 2: a minimum of 60%
 - c) Year 3: a minimum of 70%
 - d) Year 5: a minimum of 85%

Additionally, volunteer species should support functions consistent with the project design

• Non-Native and Invasive Species: No more than 10% of relative plant cover over the entire mitigation site shall be made up by non-native or invasive species, with no individual colony greater than or equal to 5% of relative plant cover. No more than 5% of relative plant cover over the entire site shall be made up of Pueraria montana, Phragmites australis, Persicaria perfoliata, or Lythrum salicaria. Invasive species are identified on the 2010 National Park Service/U.S. Fish and Wildlife Service document *Plant Invaders of Mid Atlantic Natural Areas* and the Maryland Invasive Species Council Invasive Species of Concern in Maryland. Native status will be based on the Natural Resources Conservation Service Plants Database. Vegetation Density: Native plant density of at least 435 living trees/shrubs per acre shall be

achieved by the end of the first year and maintained each monitoring year thereafter. Additionally, planted trees/shrubs shall have a minimum height of 10 inches by the end of the first year.

- The monitoring period begins the year the mitigation planting occurs, unless planting occurs after April 15, in which case the monitoring period will not begin until the following year. For each monitoring report, vegetative monitoring shall be conducted between May 1 and September 30.
- The permittee must prepare an invasive species eradication and maintenance plan to remove non-native invasive plant species within the project site if annual site visits document their presence. The plan must be submitted to the Corps for approval along with the annual monitoring report.

- For scrub-shrub or forested wetlands, measure the height of the tallest five trees within each sample plot in each monitoring year. In the final year of monitoring, measure canopy cover.
- Data should be summarized for each plot, by field/cell, and for the entire site.
- Hydrology: Five (5) groundwater monitoring wells will be established according to the 2005 Corps document entitled Technical Standard for Water-Table Monitoring of Potential Wetland Sites ERDC TN-WRAP-05-02. Hydrology data shall include:
 - a) Monitoring data for surface water and groundwater, including hydrograph of measured depth to water table, after calibrating for above-ground height of well. Data should be included for each well separately.
 - b) Discuss how precipitation during this monitoring year compares with historical precipitation data for that location.
 - c) Summarize results of the hydrology monitoring for each well, by field/cell, and for the entire site, including if each meets/does not meet
 - d) Additionally, estimate the percent of the site that is inundated or saturated to the surface on the dates of the site visits.
- Soils: Monitoring data (soil profile with photos) to determine if hydric soils are actively developing. Data should be included for each sample location. This must include evidence that saturated and anaerobic soil conditions are being met, as measured by alpha-alpha dipyridyl, IRIS devices (tubes or films), or platinum electrodes.
- <u>Delineation of Aquatic Resources:</u> At the final year of the monitoring period, the wetland boundary area as shown on the approved mitigation plan, shall be delineated using the wetland criteria outlined in the Corps of Engineers Wetlands Delineation Manual (1987) and appropriate regional supplement(s). Delineated wetlands shall be broken into projected vegetative type (e.g., emergent, scrub-shrub, forested) based on species present and density. In addition, all special aquatic sites, other waters, such as lakes and ponds, and all streams, within the approved mitigation site shall be identified and delineated. The delineated aquatic resource mitigation areas as verified by the MDE and/or Corps shall be consistent with the approved mitigation plan and contain at least as much wetland acreage and waterway linear feet as required in the permit. Deep water habitats and unvegetated areas that do not meet wetland criteria shall not be included in area measurements.
- Wetland function assessment: An assessment of the specific wetland functions and values being provided should be conducted during the first and final years of the monitoring period. The Corps New England District document entitled Wetland Functions and Values: A Descriptive Approach, or equivalent, shall be used for each wetland cell/area.

Buffer Area(s)

- Vegetation: Fifteen (15) vegetation plots (with an established minimum of 400 square feet in size for woody stem counts from which a minimum of nine (9) square feet will be evaluated for herbaceous vegetation), will be established across the site. The vegetation data shall include:
 - a) Vegetative species identification
- b) Percent ground cover assessment for each species, across all strata for each plot, shown in a table
- c) Number of woody plant stems (total and #/acre)
- d) Estimate of percent survival by planted woody species
- A non-native/invasive species assessment including percent Estimate percent cover by plant species across all strata for each plot. For each species listed in the table include native/non-native status.
- For scrub-shrub or forested buffers, estimate the percent survival of planted trees and number of native trees/shrubs per acre.

- a) Established photographic points
- b) Vegetation plots (each cardinal direction)
- c) In-stream structures (upstream and downstream)
- d) Cross-sections (upstream and downstream)

Photos are to be taken between May 1 and September 30 of each monitoring year (pictures should be taken at the same time of year when possible). Photo location points should be identified on the appropriate maps and labeled with the direction in which the photo was

- Maps and Plans: Maps should be provided to show the location of the compensatory mitigation site relative to other landscape features, habitat types, locations of photographic reference points, transects, sampling data points (e.g., vegetation plots, wells, soil samples, etc.), and/or other features pertinent to the mitigation plan. GPS coordinates should be shown on the plans for each photographic reference point and sample plot. In addition, the submitted maps and plans should clearly delineate the mitigation site perimeter(s), which will assist the project managers in locating the mitigation area(s) during subsequent site inspections. Each map or diagram should be formatted to print on a standard 8.5 by 11-inch piece of paper and include a legend and the location of any photos submitted for review. Asbuilt plans should be included if they were not already submitted to MDE and the Corps.
- Conclusions: A general statement shall be included that describes the conditions of the compensatory mitigation project. If performance standards are not being met, a brief explanation of the difficulties and potential remedial actions proposed by the Permittee, including a timetable, must be provided. MDE and the Corps will ultimately determine if the mitigation site is successful for a given monitoring period.

INVASIVE SPECIES MANAGEMENT

The sponsor will manage all invasive species as necessary to achieve compliance with the Non-Native and Invasive Species Success Criteria outlined above. Invasive species will be identified using the 2010 National Park Service/U.S. Fish and Wildlife Service document Plant Invaders of Mid Atlantic Natural Areas and the Maryland Invasive Species Council Invasive Species of Concern in Maryland.

In the event that effective control on the site is no longer practicable (such as if the watershed or drainage area in which the site is located is determined to be infested with these species), is unreasonably expensive, or is more likely to harm surrounding native vegetation than help it. appropriate management reductions may be submitted to the Corps and MDE for approval.

All herbicide application will be carried out under the supervision of a Maryland Licensed Pesticide Applicator and in accordance with labeling and EPA requirements. It is expected that most treatments, if necessary, will be conducted using spot sprayers; however, other suitable means of application may be employed as/where necessary. Treatment shall be focused on areas of known infestation reported in the annual Monitoring Reports. Exact treatment methods and timing shall be determined by species.

Once the forest canopy is established, invasive species should pose a minimal threat to the site's integrity. After canopy closure, invasive species issues should only occur in areas that undergo some type of disturbance. In the event of a forest canopy disturbance, the disturbed area should be closely monitored for invasive species prevalence.

- b) Absence of under cutting, washing around, or erosion of the bank or streambed associated with any instream structure that could lead to a collapsed structure or
- c) All structures are exposed, unless they are specified as buried rock or log sill structures.

Wetlands

- <u>Wetland Vegetation Dominance</u>: Wetland vegetation dominance, defined as a vegetation community where more than 50% of all dominant plant species across all strata are rated obligate ("OBL"), facultative wet ("FACW"), or facultative ("FAC"), using the vegetation sampling procedures as described in the appropriate regional supplement to the Corps of Engineers Wetland Delineation Manual, must be achieved
- Areal Cover Vegetative Standards: The minimum areal cover shall be vegetated by native
- (FAC or wetter) species annually as described below:
 - a) Year 1: a minimum of 50% b) Year 2: a minimum of 60%
 - c) Year 3: a minimum of 70%
- d) Year 5: a minimum of 85% Additionally, volunteer species should support functions consistent with the project design
- Non-Native and Invasive Species: No more than 10% of relative plant cover over the entire mitigation site shall be made up by non-native or invasive species, with no individual colony greater than or equal to 5% of relative plant cover. No more than 5% of relative plant cover over the entire site shall be made up of *Phragmites australis*, *Persicaria perfoliata*, or *Lythrum* salicaria. Invasive species are identified on the 2010 National Park Service/U.S. Fish and Wildlife Service document Plant Invaders of Mid Atlantic Natural Areas and the Maryland Invasive Species Council Invasive Species of Concern in Maryland. Phalaris arundinacea and Typha spp. may also be considered as invasive species by MDE and the Corps. Native status will be based on the Natural Resources Conservation Service Plants Database
- Wetland Species Richness: For scrub/shrub wetlands, establish a minimum of three species of native wetland shrubs (FAC or wetter) with no more than 75% relative cover of one species. over the entire mitigation site. For forested wetlands, establish a minimum of three species of native wetland trees and two species of native wetland shrubs (FAC or wetter) with no more than 75% relative cover of one species, over the entire mitigation site. Loblolly pine cannot be more than 35% relative cover
- Wetland Vegetation Density for PSS and PFO: For scrub-shrub or forested wetlands, native wetland (FAC or wetter) plant density of at least 435 living trees/shrubs per acre with a minimum height of 10 inches shall be achieved by the end of the first year a monitoring report is required and maintained each monitoring year thereafter through the end of the monitoring
- Wetland Vegetation Cover for PFO: For forested wetlands, average tree height of tallest five native wetland (FAC or wetter) trees within each sample plot shall be
 - a) ≥3' in height at year three.
 - b) ≥5' at year five and each monitoring year thereafter.
- Additionally, planted trees/shrubs shall have a minimum height of 10 inches by the end of the first year. Canopy cover of native wetland (FAC or wetter) trees and shrubs must be at least 30% by the end of the monitoring period.
- Wetland Hydrology: Wetland hydrology, defined as 14 consecutive days of ponding, or a water table 12 inches or less below the soil surface, during the growing season at a minimum frequency of 5 years in 10 (50 percent or higher probability). For the purpose of this

- Site visits shall preferably occur doing a period with normal precipitation and groundwater
- Monitoring must be conducted a minimum of once per year during years that monitoring reports are required.

Streams

- Stream restoration shall be monitored for five (5) out of ten (10) years; with reports at Years 1
- (As-built), 3, 5. 7, and 10. • Riffle Cross-Sections: Two (2) riffle cross sections (per stream) will be monitored.
- Longitudinal Profiles (thalweg): The Year 1 (As-built) longitudinal surveyor may include thalweg, bankfull, and potential top of bank and toe of slope depending on the designed channels cross section. Longitudinal profiles with be shown in a graphical display that overlays previous profiles in annual reports. Subsequent years longitudinal profiles will include only the thalweg.
- Habitat Assessment: Stream habitat will be monitored by using an assessment method such as EPA's Rapid Bioassessment Protocol (RBP) high gradient stream habitat form in preconstruction. Results of stream habitat assessments will be shown for all monitoring years at the time the report is submitted, including a preconstruction monitoring report.
- Biological Sampling: Sampling results for macroinvertebrates will be provided, including a figure indicating how each metric is trending considering pre-construction values. Biological samples will occur once during the monitoring period at representative reaches of stream and will be sampled during the same time of year as preconstruction samples.
- Photographs: Site conditions will be documented with established, fixed photo stations along the entire length of each stream restoration project area. Photographs will focus on vegetation, wetlands as applicable, and stream conditions. Photographs will also include each grade control structure (upstream and downstream) and cross sections (upstream and downstream). • The stream project will be evaluated at least twice during the active monitoring period using
- the Maryland Stream Mitigation Framework calculator. • The permittee must notify and provide to the Corps, a detailed description and construction plans for any necessary corrective measures, including maintenance and repair, or alteration
- in any way, of the permitted stream restoration 15 days prior to performance of such corrective measures for review and approval. • If the project is determined to be stable at the end of Year 5 and meets all final year performance standards for two consecutive years, the permittee may request an exemption

from additional stream monitoring requirements. Stream reaches will be reevaluated with the MSMF Stream Calculator during monitoring years 3, 5, 7, and 10. Notes will be made in the calculation runs on earlier years (3, 5, 7) where further improvements are expected to occur and with any remedial actions needed to maintain the project and vegetation.

- Wetlands
- Vegetation: Ten (10) vegetation plots (with an established minimum of 400 square feet in size for woody stem counts from which a minimum of nine (9) square feet will be evaluated for herbaceous vegetation), will be established across the site. The vegetation data shall include:
 - a) Vegetative species identification b) Estimate of actual and relative percent cover by plant species, in order of dominance across all strata for each plot, shown in a table
 - c) Number of woody plant stems (total and #/acre) d) The percentage of dominant species FAC or wetter
 - e) Estimate of percent survival by planted woody species
 - f) A non-native/invasive species assessment including percent cover

Data should be summarized for each plot, by field/cell, and for the entire site.

Monitoring reports will be submitted to Agencies by December 31st each reporting year following construction. The following information must be included with the monitoring report:

- Monitoring and Performance Standards: Summary table comparing the required performance standards to the conditions and status of the developing mitigation site must be completed and attached to the beginning of the Monitoring Report. The table will list the monitoring requirements and performance standards and evaluate whether the compensatory mitigation project site, including each area (plot, well, field or cell as appropriate), is successfully achieving the approved performance standards or trending towards success.
- Title page indicating the permit name, permit tracking number (Corps permit number and MDE NT number), mitigation site name (if applicable), phase (if applicable), monitoring year, and preparer identification (name, address, phone number, and
- Written description of the location, any identifiable landmarks of the mitigation site, including information to locate the site perimeter(s), and coordinates of the mitigation
- Date(s) of site inspections.
- A brief paragraph describing the goals and objectives of the mitigation site, including the authorized impact acreage and type of aquatic resource impacted, proposed mitigation acreage and aquatic resource type approved as part of the Phase II Wetland Mitigation Plan or Permit. Include the dates the mitigation construction was
- A brief narrative description of the mitigation site addressing its position in the
- clearly identified on the appropriate maps. A short statement on whether the performance standards are being met.
- Dates of any recent corrective or maintenance activities conducted since the
- Specific recommendations for any additional corrective or remedial actions. Estimate the percent of the mitigation site that is establishing into wetland and the type of wetland system (ex: forested, scrub-shrub, emergent). If this differs from what was planned, show the boundaries of the actual wetland area/types on the plans or
- Discussion of growing season and how it was determined for this site. • Summary data: Summary data should be provided to substantiate the success and/or potential challenges associated with the compensatory mitigation project. Refer to Section
- Photographs: Take one set of photographs from

- Project Overview / Background Data:
 - site (expressed as latitude and longitude).
 - started and the planting was completed.
 - landscape, adjacent waterbodies, and adjacent land use. • Describe methods used to evaluate performance standards. Plot locations should be

A narrative description of existing mitigation site conditions and functions and how

- the mitigation site has or has not achieved the goals, objectives and performance standards established for the project.
- previous report submission.
- Estimate the percent of the mitigation site buffer that is establishing into forested buffer. If this differs from what was planned, show the boundaries of the actual forested buffer area on the plans or maps.
- IV below for monitoring report measurements to include for the overall site.

ROFESSIONAL CERTIFICATION HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND. LICENSE#:52852 EXP. DATE:<u>6/14/2</u>022

NOT FOR CONSTRUCTION

CONCEPT PLAN 65% MIT. PLAN 11/9/2020 2/15/2021 65% MIT. PLAN REV 9/3/2021 65% MIT. PLAN REV.

1/22/2021 65% MIT. PLAN REV.

3/10/2022 65% MIT. PLAN REV. 4

BW/JC OB NUMBER ESIGN TYPE: STRFAM

HEET NO:

50 OF 5 I

R:\Rescad\Projects\102054-MDSHA Cabin Branch\STREAM DESIGN\Plan Sheets\102054-MITIGATION & MONITORING.dwg, 3/15/2022 10:45:42 AM, bwilfong, ARCH expand D (24.00 x 36.00 Inches), 1:1

Appendix B: Option Agreement with Green Bloom MV Park LLC and Green Bloom MV Development, LLC

SHA 63.30-10(02/01/95) Office of Real Estate

Permanent Easement Option Contract with the State Highway Administration of the

R/W Contract No. **AZ0485172-0002**

Item No.

Maryland Department of Transportation

THIS OPTION, granted this	of	in the ye	ar 20 ,	,

BY:

Name: Address:

Green Bloom MV Park, LLC 19550 Montgomery Village Avenue Gaithersburg, MD 20886

and the Mortgagees, Trustees and/or Lien Holders listed in the PAYEE CLAUSE who will be contacted by the STATE HIGHWAY ADMINISTRATION for the purpose of agreeing to release the land, easements and/or rights hereinafter described from the operation and effect of any mortgage and/or lien which they may hold upon the property of the above mentioned persons, it being understood and agreed that they retain their rights as mortgagees and/or lienors in and to the remainder of the land of the above mentioned persons not hereby agreed to be conveyed.

All as the parties of the first part, hereinafter called the GRANTORS, to **HGS**, **LLC**, a Virginia limited liability company ("**HGS**") on behalf of the STATE OF MARYLAND, party of the second part, hereinafter called the GRANTEE.

- A. WHEREAS, the said GRANTEE proposes to lay out, open, establish, construct, extend, widen, straighten, grade and improve as a part of the State Highway System of Maryland, a highway and/or bridge, together with the appurtenances thereto belonging, shown on the plans designated as Construction Contract No. AZ0485172-B for the improvements to Cabin Branch Phase I Stream Mitigation in Montgomery County.
- B. WITNESSETH, that in consideration of the mutual benefits, inuring to each of the parties hereto and the covenants and agreements between them, incorporated herein, beneficial to each of the parties to this agreement, the said GRANTORS do hereby give and grant to the GRANTEE, its successors and assigns, the exclusive right and option to purchase for a period of twelve (12) months from the date hereof, for the sum of One Hundred Ninety-eight Thousand Eight Hundred Fifty and No/100 Dollars (\$198,850.00) all of the following described land, easements, rights, privileges and controls.
- C. ALL THE EASEMENTS, RIGHTS, PRIVILEGES AND CONTROLS, as shown and/or indicated, on the attached preliminary plat all of which plat are made a part hereof, and which are duly recorded, or intended to be recorded among the Land Records of the aforesaid County.
- **D. TEMPORARY CONSTRUCTION EASEMENT:** TOGETHER with the temporary right during the period of construction to use the area of land shown on the **attached preliminary plat** for the purpose of **construction access, stockpiling materials and haul roads.**
- E. IT IS FURTHER AGREED that the GRANTORS will N/A.
- F. IT IS FURTHER AGREED that the GRANTEE will N/A.
- G. **IT IS FURTHER AGREED** that the deed or deeds or other instruments of conveyance executed by the GRANTORS conveying to the GRANTEE all of the land, premises, easements, rights and privileges described in this option must contain covenants (running with and binding the remaining property of the GRANTORS, and binding the GRANTORS, their heirs, successors and assigns) that will perpetuate all of the rights and privileges

agreed to be conveyed to the GRANTEE under the provisions of this option. The terms and conditions of this contract shall survive the execution and delivery of the deed and shall not become merged therein.

H. IT IS FURTHER AGREED that the GRANTORS herein do hereby authorize and designate

Name: Green Bloom MV Park, LLC

Address: c/o Monument Realty LLC 750 17th Street NW Ste. 110 Washington, DC 20006

as their specified Agent or the individual Grantor to receive, on their behalf, the official notice of the acceptance of this option by the GRANTEE, said notice to be forwarded by mail to said specified Agent or Grantor. The said GRANTORS do hereby further authorize the GRANTEE, its members, officers, agents or employees to enter in and upon the hereinbefore described premises and proceed with the construction of the said state roads and/or bridge and their appurtenances, immediately upon the mailing by the GRANTEE to said Agent or Grantor, by mail, of the said notice of the acceptance of this option. The taking possession of said land and premises by the GRANTEE, however, shall not be construed as a waiver of any objection to title.

- I. IT IS FURTHER AGREED that upon acceptance of this option by the GRANTEE, said GRANTORS will, upon demand, convey unto the State of Maryland, to the use of the State Highway Administration of the Department of Transportation (or to such person or persons as may be designated by the GRANTEE), by a special warranty deed, or deeds, a good and marketable fee simple title, the same to be delivered to the office of the GRANTEE at Baltimore, Maryland, or to a duly appointed agent acting for the GRANTEE in this particular instance, within thirty (30) days from the date of said demand, to be made in writing within three (3) months from the date of the acceptance of this option; provided that, GRANTORS and GRANTEE further agree each to employ their best efforts to conform with said time periods except, however, that no cause of action shall lie for the failure of such best efforts to so conform. The deed or deeds, and other instruments of conveyance must meet with the approval of the Office of Counsel of the State Highway Administration and shall contain the covenants set forth in this option.
- J. **PAYEE CLAUSE:** Payment shall be made for the land rights herein agreed to be conveyed, upon receipt of the approvals mentioned in this option, by check, from the Treasurer of the State of Maryland, said checks, except as herein otherwise provided, to be made payable to **Green Bloom MV Park, LLC** its heirs and assigns.
- K. IT IS FURTHER AGREED that the contents of this option and the acceptance thereof, comprise the entire contract and that no verbal representations made before or after the signing hereof, or anything not herein written, shall vary the terms of this option, and that the payment of One Hundred Ninety-eight Thousand Eight Hundred Fifty and No/100 dollars (\$198,850.00) by the GRANTEE shall constitute full and final payment for the acquisition of the property described in this option, and any damages to the remainder thereof, if any.

Relocation Assistance payments and services, if any, are in addition to, and are not included, as any part of this option contract.

IN WITNESS WHEREOF THE GRANTORS have hereunto set their hands and seals. SIGNED, SEALED AND DELIVERED IN THE PRESENCE OF:

WITNESS Yallui Maycyni	FOR: Green Bloom MV Park, LLC, a Delaware limited liability company By: Monument Realty LLC, its authorized agent (SEAL) BY: F. Russell Hines, Authorized Signatory
	HGS, LLC
WITNESS	BY: Ben Eubanks, General Manager
STATE OF -Maryland Di strict of COUNT	- Colonia of
County personally appeared F. Russell Hangs option to be his respective act.	and each severally acknowledged the aforegoing
010	notary public Emily M. Lilly
M	Ty Commission expires 11/14/2024

IN WITNESS WHEREOF THE GRANTORS have hereunto set their hands and seals. SIGNED, SEALED AND DELIVERED IN THE PRESENCE OF:

		FOR: Green Bl	oom MV Park, LLC	
WITNESS		BY: F. Russell I	Hines, President	(SEAL)
WITNESS		HGS, LLC BY: Ben Eubank	cs, General Manager	(SEAL)
I hereby certify that	t, before me, the subscriber, a appeared BEN EUERALK	UNTY OF NOTARY PUBLIC of the S and each severall	FATE OF Virginal in and to y acknowledged the afore	City of for Richmone going
AS WITNESS MY	HAND AND NOTARY SE.	AL, this 28th of Sept.	embor in the y	ear 2020
NOTARY SEAL	HAND AND NOTARY SE	NOTARY PUBLIC	man Later Gra	oncles-
	EXPIRES 10/31/2021	My Commission expires	10/31/2021	

STATE HIGHWAY ADMINISTRATION $\qquad \qquad \text{of the} \\ \text{DEPARTMENT OF TRANSPORTATION OF MARYLAND}$

ORE PEC 9/99

4

Appendix C: Cabin Branch Function Based Rapid Stream Assessment

FINAL DRAFT FUNCTION-BASED RAPID STREAM ASSESSMENT METHODOLOGY METHODOLOGY SEQUENCE

A report has been completed that provides detailed guidance on how this assessment is to be conducted (Starr et al, 2015). It can be located on the USFWS Chesapeake Bay Field Office website under Stream Restoration Protocol Publications. The methodology report in written based on the sequence in how the assessment should be conducted, as much as possible. However, there are some sections in the report that are out of sequence based on where that information is recorded on the data sheets. Therefore, this section lists the order of how the assessment should be conducted. The following is the rapid function-based assessment stepwise procedure:

- 1. Office Pre Site Visit Tasks
- 2. Rapid Watershed Assessment Form
- 3. Rapid Assessment Summary Form Bankfull Determination
- 4. Rapid Assessment Summary Form Rosgen Classification
- 5. Existing and Proposed Function-based Rapid Reach Level Stream Assessment Form Only the existing conditions
- 6. Rapid Assessment Summary Form Overall Existing Function-based Rapid Stream Assessment
- 7. Rapid Assessment Summary Form Channel Evolution Trend
- 8. Rapid Assessment Summary Form Restoration Potential
- 9. Existing and Proposed Function-based Rapid Reach Level Stream Assessment Form proposed conditions
- 10. Rapid Assessment Summary Form Overall Proposed Function-based Rapid Stream Assessment
- 11. Overall Project Evaluation

	EXISTING a				MENT FIE	_	_		N-BAS	ED		
atershed:	Middle Potomac - Catoctin				Rater(s):		RC/BW					
eam:	Cabin Branch				. , ,							
					Date:		3/10/2022					
ach Length:	5008 linear feet				Latitude:		39.177353					
oto(s):	See Attached				Longitude:		-77.199137	7				
ach ID:	Cabin Branch]			Reach Score/	Reach Total	Ex. 60/170	Prop.: 1	134/170	Quality:	Ex: 0.35 P	rop:0.7
		Functio	on-base	d Rapid	Reach Lev	el Stream A	ssessme	nt				
Assessment						Cat	egory					
Parameter	Measurement Method	Fun	ctionin	g		Function	ing-at-Ris	sk		No	ot Functio	oning
			St	ream Fu	ınction Pyra	mid Level 1	Hydrolog	IY				
	1. Concentrated Flow		I for cond pairments ent land (from		al for concentrate, however, m				flow/imp restor	al for conce pairments to ation site a ents are in	o reach nd no
	Existing Condition	10	9	8	7	6	5		4	3	2	1
9 —	Proposed Condition	10	9	8	7	6	5		4	3	2	1
Runoff	2. Flashiness	ime as a atterns, oils, ess than		flow regime a y, and soils, im				result o	r flow regim of rainfall pa logy, and so ious cover of than 15%	atterns, oils,		
	Existing Condition	10	9	8	7	6	5		4	3	2	1
	Proposed Condition	10	_	0	-	6	5		4	3	2	1
	Stream Function Pyran		9 Hydro	8 logy Ov	7 erall EXISTII		n F	FAR	NF	Sco	re:7	
		nid Level 1	Hydro	logy Ov	erall EXISTII	NG Conditio			NF NF	Scor		
	Stream Function Pyram Stream Function Pyram	nid Level 1	Hydro Hydrol	logy Ov	erall EXISTII	NG Conditio	ion F	FAR N				
	Stream Function Pyran	nid Level 1	Hydro Hydrol	logy Ov	erall EXISTII erall PROPO	NG Condition SED Condite mid Level 2	ion F	FAR N				
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition	nid Level 1	Hydro Hydrol Str	logy Ov	erall EXISTII erall PROPO inction Pyran	NG Condition SED Condite mid Level 2	ion F Hydraulic - 1.50	FAR N			re:14	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR)	nid Level 1	Hydrol Str <1.20	logy Ove ogy Ove ream Fu	erall EXISTII erall PROPO inction Pyrai	NG Condition SED Condition mid Level 2	ion F Hydraulic - 1.50	FAR N	NF	Scor	re:14 >1.50	1 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition	nid Level 1 nid Level 1	Hydrol Str <1.20	logy Oveream Fu	erall EXISTII erall PROPO inction Pyran	NG Condition SED Condition mid Level 2	ion F Hydraulic - 1.50	FAR N	NF 4	Scor	>1.50	
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA	nid Level 1 nid Level 1 10 10	Hydrol Str <1.20 9	logy Oveream Fu	erall EXISTII erall PROPO inction Pyran	NG Condition SED Condition mid Level 2	ion F Hydraulic - 1.50 5 5	FAR N	NF 4	Scor	>1.50 2 2	
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams)	nid Level 1 id Level 1 10 10 10	Hydrol	logy Oveream Fu	erall EXISTII erall PROPO noction Pyran 7 7	NG Condition SED Condition mid Level 2 1.21 6 6 6	ion F Hydraulic - 1.50 5 5 - 1.4	FAR N	4 4	3 3	>1.50 2 2 <1.4	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition	nid Level 1 id Level 1 10 10 10	Hydrol	logy Oveream Further 8	erall EXISTII erall PROPO noction Pyran 7 7	NG Condition SED Condition 1.21 6 6 2.1 6 6	ion F Hydraulic - 1.50 5 5 - 1.4	FAR N	4 4 4	3 3 3	>1.50 2 <1.4 2	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial	nid Level 1 id Level 1 10 10 10	Hydrol Str <1.20 9 9 >2.2	logy Oveream Further 8	erall EXISTII erall PROPO noction Pyran 7 7	NG Condition SED Condition 1.21 6 6 2.1 6 6	ion F Hydraulic - 1.50 5 5 - 1.4	FAR N	4 4 4	3 3 3	>1.50 2 2 <1.4 2 2	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 10 10 10	Hydrol	logy Oveream Further 8 8 8 8	erall EXISTII erall PROPO noction Pyrar 7 7 7	NG Condition SED Condition Mid Level 2 1.21 6 6 6 2.1 6 6 1.3	ion F Hydraulic -1.50 5 5 -1.4 5 5 -1.1	FAR N	4 4 4 4	3 3 3	>1.50 2 2 <1.4 2 <1.1	1 1 1
Floodplain Connectivity (Vertical Stability)	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition Proposed Condition Ab. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Existing Condition	10 10 10 10 no concrunoff is pri hillslopes > >200 ft from or wetland a debris	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 9 centrated marily sh <10%; h n stream;	8 8 8 8 flow; neet flow; illslopes ponding d litter or well	rall EXISTII rall PROPO nction Pyral 7 7 7 7 runoff is equa and rill erosic 50 - 200 ft fror	NG Condition SED Condition 1.21 6 6 6 2.1 6 6 1.3	### Hydraulic -1.50 -1.50 5 -1.4 5 5 -1.1 5 concentrate hillslopes 1: ding or wet!	ed flow (m 0 - 40%; and area	4 4 4 4 4 ininor gully hillslopes is and litter	3 3 3 3 conc preser and rill e >40% from st wetlandd debris	>1.50 2 <1.4 2 <1.1 2 centrated flitt (extensive erosion); hill; hillslopes tream; ponc areas and jams are no	1 1 1 1 ows e gully Illslopes <50 ft ding or litter or ot well
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 no concrunoff is pri hillslopes > 200 ft from or wetland a debris rep	Hydro Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 9 entrated marily sh <10%; h in stream; areas an- ijams are ignesented	8 8 8 8 8 flow; leet flow; ponding d litter or well	rall EXISTII erall PROPO Inction Pyral 7 7 7 7 runoff is equand rill erosis 50 - 200 ft froi or de	NG Condition SED Condition MID Level 2 1.21 6 6 6 1.3 6 6 ally sheet and on occurring); mostream; ponethris jams are in	Hydraulic -1.50 -1.4 -1.4 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1	ed flow (m 0 - 40%; and area	4 4 4 4 hilisopes is and litter a	3 3 3 3 concepted and rill and rill and reserved and rill debris from step wetland debris representations.	>1.50 2 <1.4 2 2 <1.1 2 centrated flitt (extensive erosion); hill; hillslopes tream; ponce areas and jams are nesented or a	1 1 1 1 1 1 tows e gully llslope: <50 ft diing or litter o ot well bsent
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 no concrunoff is pri hillslopes - 200 ft from or wetland a debris rep	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily she 10%; hin areas anipars are resented 9	8 8 8 8 8 flow; neet flow; illslopes ponding d litter or well	rall EXISTII erall PROPO notion Pyrar 7 7 7 7 runoff is equand rill erosic 50 - 200 ft fror or de	NG Condition SED Condition Mid Level 2 1.21 6 6 6 1.3 6 6 6 ally sheet and on occurring); m stream; ponethris jams are in	Hydraulic -1.50 -1.50 -1.4 -1.4 -1.5 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1	ed flow (m 0 - 40%; and area	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 conc preser and rill e >40% from st wetland debris repres	>1.50 2 <1.4 2 <1.1 2 centrated flit (extensive erosion); hill; hillslopes tream; ponc areas and jams are nesented or all 2	1 1 1 1 1 sows e gully llsloper tiding or litter oot well beent 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage	10 10 10 no concrunoff is pri hillslopes - 200 ft from or wetland a debris rep	Hydrol Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily sh <10%; hin stream; areas aniams are resented 9 9	8 8 8 8 8 flow; leet flow; ponding d litter or well	rall EXISTII erall PROPO Inction Pyral 7 7 7 7 runoff is equand rill erosis 50 - 200 ft froi or de	NG Condition SED Condition SED Condition 1.21 6 6 6 1.3 6 6 6 ally sheet and on occurring); matream; ponethris jams are in	### Hydraulic -1.50 -1.50 5 -1.4 5 5 -1.1 5 concentrate hillslopes 1 ding or wethin minimally reference to the second of the second o	ed flow (m 0 - 40%; and area epresente	4 4 4 4 hilisopes is and litter a	3 3 3 3 conc preser and rill e >40% from st wetland debris repres	>1.50 2 <1.4 2 <1.1 2 centrated flut (extensive prosion); hil; hillslopes tream; ponc areas and jams are no sented or all 2 2 2	1 1 1 1 1 sows e gully llslope litter o ot well bsent 1 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage Existing Condition Froposed Condition 5. Floodplain Drainage	10 10 10 10 no concrunoff is pri hillslopes 200 ft from or wetland a debris rep	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily sh <10%; hn a stream; areas an ijams are resented 9 9 Stable	8 8 8 8 flow; neet flow; illslopes ponding d litter or well s	rall EXISTII erall PROPO notion Pyrar 7 7 7 7 runoff is equand rill erosic 50 - 200 ft froi or de	NG Condition SED Condition MID Level 2 1.21 6 6 6 1.3 6 6 6 ally sheet and on occurring); mustream; ponebris jarms are in 6 6 Localizer	### Hydraulic - 1.50 - 1.50 5	ed flow (m 0 - 40%; and area epresente	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 cone preser and rill a >40% from st wetland debris repres	>1.50 2 <1.4 2 <1.1 2 2 centrated flit (extensive erosion); hill; hillslopes tream; pond areas and jaens are no sented or all 2 2 spread Insta	1 1 1 1 1 sows e gully llslope litter o ot well bsent 1 1 ability
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Hydrol Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily sh <10%; hin stream; areas aniams are resented 9 9	8 8 8 8 8 flow; neet flow; illslopes ponding d litter or well	rall EXISTII erall PROPO notion Pyrar 7 7 7 7 runoff is equand rill erosic 50 - 200 ft fror or de	NG Condition SED Condition SED Condition 1.21 6 6 6 1.3 6 6 6 ally sheet and on occurring); matream; ponethris jams are in	### Hydraulic -1.50 -1.50 5 -1.4 5 5 -1.1 5 concentrate hillslopes 1 ding or wethin minimally reference to the second of the second o	ed flow (m 0 - 40%; and area epresente	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 conc preser and rill e >40% from st wetland debris repres	>1.50 2 <1.4 2 <1.1 2 centrated flut (extensive prosion); hil; hillslopes tream; ponc areas and jams are no sented or all 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Stream Function Pyramid Level 2 Hydraulics Overall PROPOSED Condition F FAR NF

Quality: Ex: 0.35 Prop:0.79 Reach ID: Cabin Branch Reach Score/Reach Total Ex. 60/170 Prop.: 134/170 Function-based Rapid Reach Level Stream Assessment Category Assessment Measurement Method Not Functioning **Functioning Parameter** Functioning-at-Risk Stream Function Pyramid Level 3 Geomorphology 7. Riparian Vegetation Riparian Vegetation (Score = Average of Left and Right bank, max score of 10) Zone (EPA, 1999, Riparian zone extends to a modified) Riparian zone extends to width of >100 feet; good Riparian zone extends to a width of 25-100 feet; species a width of <25 feet; little or vegetation community composition is dominated by 2 or 3 species; human no riparian vegetation due diversity and density; human activities greatly impact zone; invasive species well to human activities; activities do not impact zone; represented and alter the community majority of vegetation is invasive species not present invasive or sparse Left Bank Existing 10 6 8 4 Left Bank Proposed 5 3 1 10 8 6 4 Right Bank Existing 10 8 6 1 Right Bank Proposed 10 6 5 Dominate bank erosion (Score =Average of Left and right bank, max score of 10) Dominate bank erosion rate Dominate bank erosion rate potential is moderate rate potential is high potential is low 8. Dominant Bank Erosion or Rate Potential BEHI/NBS Rating: M/L, M/M, M/H, L/Ex, H/L, M/VH, M/Ex, BEHI/NBS Rating: H/H, BEHI/NBS Rating: L/VL, L/L H/L, H/M, VH/VL, Ex/VL H/Ex, VH/H, Ex/M, Ex/H, Lateral Stability L/M, L/H, L/VH, M/VL Ex/VH, VH/VH, Ex/Ex **Existing Condition** 10 8 7 6 5 4 1 (Right bank Proposed Condition 9 7 6 5 4 3 2 1 10 8 (Right Bank) Existing Condition 10 9 8 7 6 5 4 3 2 1 (Left bank Proposed Condition 7 10 9 8 6 5 4 3 2 1 (Left Bank) 9. Lateral Stability Extent Stable Localized Instability Widespread Instability **Existing Condition** 10 9 8 7 6 4 2 Proposed Condition 10 8 6 10. Shelter for Fish and Greater than 70% of 20-70% mix of stable habitat: suited for full colonization Less than 20% mix of Macroinvertebrates (EPA substrate favorable for potential: adequate habitat for maintenance of stable habitat: lack of epifaunal colonization and populations; presence of additional substrate in the form habitat availability less fish cover; mix of snags, of new fall, but not yet prepared for colonization (may rate than desirables obvious; at high end of scale) submerged logs, undercut substrate unstable or banks, rubble, gravel, cobble Bedform Diversity (Do not complete if stream is ephemeral) and large rocks, or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not ransient) **Existing Condition** 10 Proposed Condition 10 9 11a. Pool-to-Pool Spacing 4.0 - 5.0 3.0 - 4.0 or 5.0 - 7.0 < 3.0 **or** >7.0 Ratio (Watersheds < 10 mi²) **Existing Condition** 10 9 8 7 6 5 4 2 Proposed Condition 10 7 5 4 3 8 6 2 11b. Pool-to-Pool Spacing 5.0 - 7.0 3.5 - 5.0 or 7.0 - 8.0 <3.5 or >8.0 Ratio (Watersheds > 10 mi²) **Existing Condition** 10 8 6 4 Proposed Condition 10 9 8 7 6 5 4 3 2 12a. Pool Max Depth >1.5 1.2 - 1.5<1.2 Ratio/Depth Variability Gravel Bed Streams) **Existing Condition** 10 9 8 6 4 Proposed Condition 10 9 8 6 4 2 12b. Pool Max Depth 1.1 - 1.2 >1.2 <1.1 Ratio/Depth Variability Sand Bed Streams) **Existing Condition** 10 9 8 6 5 4 2 3 1 Proposed Condition 10 4 3 1 Bedform Diversity (Do not complete if stream is ephemeral) Moderate Gradient Perennial Streams in Colluvial Valleys 11. Pool-to-Pool Spacing 2.0 - 4.0 4.0 - 6.0>6.0 Ratio (3-5% Slope) Existing Condition 10 8 4 Proposed Condition 10 12. Pool Max Depth >1.5 1.2 - 1.5 <1.2 Ratio/Depth Variability **Existing Condition** 10 9 8 7 6 5 4 1 Proposed Condition 10 9 8 6 5 4 3 2 1 Stream Function Pyramid Level 3 Geomorphology Overall EXISTING Condition NF Score:17 Stream Function Pyramid Level 3 Geomorphology Overall PROPOSED Condition F FAR Score:53

each ID:	Cabin Branch	Reach Score/Reach Total Ex. 60/170 Prop.: 134/1								: Ex: 0.35 Pr	op:0.79				
		Func	tion-base	d Rapid	I Reach Lev	el Stream Ass	essment								
ssessment	Management Mathead					Categ	jory								
Parameter	Measurement Method	F	unctionin	9		Functioning	g-at-Risk		N	ot Functio	ning				
		Stı	ream Fund	ction Py	ramid Leve	4 Physicoche	mical								
Water Quality and Nutrients (Do not complete if stream is ephemeral)	13. Water Appearance and Nutrient Enrichment (USDA 1999)	depth 3 to 6 ft (less if slightly colored); no oil sheen on surface; no noticeable film on submerged objects or rocks. Clear water along entire reach; diverse aquatic plant community includes low quantities of many species of macrophytes; little algal growth present							visible to depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 3 to 6 ft (less if slightly colored); no oil sheen on surface; no noticeable film on submerged objects or rocks. Clear water along entire reach; diverse aquatic plant community includes low quantities of many species of macrophytes; little algal growth present visible to depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 to 3.0 ft; may have slight green color; appearance most of the depth 0.5 ft; slow may be bright of the color						at moving green; algal , at of strong bil, brown each; ng
ž	Existing Condition	10	9	8	7	6	5	4	3	2	1				
later Quality a	14. Detritus (Petersen, 1992) Existing Condition	and woo	consisting of od without se covering it		Leaves and	d wood scarce; fir sedim		ebris without	black odo	organic sedir in color and r (anaerobic etritus abser 2	d foul :) or				
>	Proposed Condition	10	9	8	7	6	5	4	3	2	1				
Str	eam Function Pyramid							FAR NF		Score:7					
	eam Function Pyramid							FAR NF		Score:11					
	<u> </u>					Level 5 Biolog									
<u>.v</u>	15. Macroinvertebrate		Abundant			Rare				Not present					
am	Existing Condition	10	9	8	7	6	5	4	3	2	1				
Biology (Do not complete if stream is ephemeral)	Proposed Condition 16. Macroinvertebrate Tolerance	10 Abundar	9 nt intolerant	8 species	7	6 Limited intoler	5 ant species	4	3 Only	tolerant spe	1 ecies				
iolc	Existing Condition	10	9	8	7	6	5	4	3	2	1				
e pi	Proposed Condition	10	9	8	7	6	5	4	3	2	1				
ot	17. Fish Presence		Abundant			Rare				Not present					
9	Existing Condition	10 10	9	8	7	6	5	4	3	2	1				
	Proposed Condition If existing biology is FAR or NF, provide description of cause(s)	10	9	8	7	6	5	4	3		1				
Sti	ream Function Pyramid	l Level 5	Biology C)verali i	EXISTING C	ondition F	FAR N	NF	Sc	ore: 15					
			Diviogy C	· · · · all l		ondition F		**							

	T	1			O
Reach ID:	Cabin Branch	Function-hased Ranio	Reach Score/Reach Total Reach Level Stream As	•	Quality: Ex: 0.35 Prop:0.79
	1	I unotion-basea rapid		egory	
Assessment Parameter	Measurement Method	Functioning		ing-at-Risk	Not Functioning
		Bankfull Determination	and Rosgen Stream Cla	assification	
Rosgen Stream T	ype (Observation): EX - F F	PRO - C/Bc			
Regional Curve (circle one): Piedmor	t Coastal Plain	Allegheny Plateau/Ridge	and Valley Urban	Karst
DA (sqmi)	4.32				
BF Width (ft)	26.2-27.0			BF Area (sqft)	40.6-50.7
BF Depth (ft)	1.5-1.94			Percent Impervious (%)	21.3
		Fiel	d Measurements		
	Parameter		Measureme	nts and Ratios	
Water surface to elevation differen	geomorphic feature ce	Existing Min:1.6, Max: 2.5, Avg.:2.0			
Riffle Mean Deptl	h at Bankfull Stage (dbkf)	Existing Min:1.7, Max: 2.29, Avg.:2.09	Proposed: 1.73 & 1.84		
Riffle Width at Ba	ankfull Stage (Wbkf)	Existing Min:17.1, Max:22.5, Avg.:20.2	Proposed: 23.2 & 25.6		
Riffle XS Area at (Abkf = dbkf*Wb		Existing Min: 34.4, Max: 45.8, Avg.:40.3	Proposed: 40.18 & 41.12		
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Existing Not calculated at all XS Minimum 28.23	Target: 92.8 & 102.4		
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Existing Min: 1.4, Max: 1.93 Avg: 1.6	Target 4.0		
Low Bank Heigh	t (LBH)	Existing Min: 4.09, Max: 5.52, Avg.:4.53	Proposed: 2.3 & 2.4		
Riffle Maximum D (Dmax)	Pepth at Bankfull Stage	Existing Min: 1.95, Max: 3.35, Avg.:2.56	Proposed: 2.3 & 2.4		
Bank Height Rat (BHR=LBH/Dma		Existing Min: 1.46, Max: 2.24, Avg.:1.79	Proposed: 1.0		
BEHI/NBS Rating	gs and Lengths	H/M, H/L, M/M, M/L, L/L	L/L		
Pool to Pool Spac	cing (P-P)	Ranges from 47-168	Proposed: Min:104, Max:168, Avg.:136.6		
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- kf)	Range from 2.4-8.4	Proposed: Min:4.4, Max:7.0, Avg.:5.7		
Pool Maximum Do (Dmbkfp)	epth at Bankfull Stage	n/a	Proposed: 4.3 & 4.6		
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp lbkf)	n/a	Proposed: 2.5		
Macroinvertebrate	e Taxa Observed	n/a	n/a		

	EXISTING a			ACH LEVE			TION-BAS	ED		
Watershed:	Middle Potomac - Catoctin			Rater(s):		RC/BW				
Stream:	Un -Named Tributary to Cabin	Branch		Date:		3/10/2022				
Reach Length:	542 linear feet			Latitude:		39.177353				
Photo(s):	See Attached			Longitude:		-77.199137				
Reach ID:	Trib 1	 1		•	Booch Total	Ex. 24/170 Pr	on : 426/470	Quality	: Ex: 0.14 P	ron:0 8
teach ib.	THE I	Function-ba	sed Rapid	Reach Lev			ор 136/1/0	<u></u>		
					Ca	tegory				
Assessment Parameter	Measurement Method	Function	ing			ing-at-Risk		No	ot Function	ning
			Stream Fu	ınction Pyraı	mid Level 1	Hydrology				
	1. Concentrated Flow	No potential for co flow/impairmen adjacent lan	nts from		e, however, m		rments to reach place to protect	flow/imp	al for conce pairments to ation site ar ents are in	reach nd no
	Existing Condition	10 9	8	7	6	5	4	3	2	1
5 =	Proposed Condition	10 9	8	7	6	5	4	3	2	1
Runoff	2. Flashiness	Non-flashy flow re result of rainfall geology, and impervious cover 6%	patterns, I soils,			is a result of rai		result o geol impervi	flow regime f rainfall pa ogy, and so ous cover g than 15%	tterns, oils,
	Existing Condition	10 9	8	7	6	5	4	3	2	1
	Proposed Condition	10 9	8	7	6	5	4	3	2	1
	Stream Function Pyran	nid Level 1 Hyd	rology Ov	erall EXISTIN	NG Conditio	on F FA	AR NF	Sco	re:5	
	Stream Function Pyram	id Level 1 Hydr	ology Ove	erall PROPO	SED Condit	tion F FA	R NF	Scor	e:11	
	<u> </u>		Stream Fu	ınction Pyrar	nid Level 2	Hydraulics				
	3. Bank Height Ratio (BHR)	<1.20			1.21	1 - 1.50			>1.50	\neg
	Existing Condition		8	7	6	5	4	3	2	1
ability)	Proposed Condition 4a. Entrenchment (Meandering streams in alluvial	10 9 >2.2	8	7	6	5	4	3	2	1
	valleys or Rosgen C, E, DA	- 2.2			2.1	1 - 1.4		-	<1.4	
Š	Streams)			7						
ical Sta	Streams) Existing Condition	10 9 10 9	8	7 7	6 6	1 - 1.4 5 5	4 4	3	<1.4 2 2	1 1
ity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial	10 9			6	5		3	2	1 1
tivity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non	10 9 10 9 >1.4			6	5 5		3	2	1 1
nectivity (Vertical Sta	Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 9 10 9 >1.4	8	7	6 6	5 5 3 - 1.1	4	3	2 2 <1.1	
Floodplain Connectivity (Vertical Stability)	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition	10 9 10 9 >1.4	8 8 8 ed flow; sheet flow; sheet flow; in ilsopes m; ponding and litter or ure well	7 7 7 runoff is equa and rill erosic 50 - 200 ft fror	6 6 6 ally sheet and on occurring); m stream, pon	5 5 5 5 5 5 5 concentrated fl hillslopes 10	4 4 ow (minor gully 40%; hillslopes I areas and litter	3 3 concepresent and rill 6 >40%; from st wetlandd debris	2 2 <1.1 2 2 centrated flot (extensive	1 1 ows e gully lslopes <50 ft ling or litter or ot well
Floodplain Connectivity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; sheet flow; in ilsopes m; ponding and litter or ure well	7 7 7 runoff is equa and rill erosic 50 - 200 ft fror	6 6 6 ally sheet and on occurring); m stream, pon	5 5 3 - 1.1 5 5 concentrated fl hillslopes 10 - ding or wetland minimally representations.	4 4 ow (minor gully 40%; hillslopes I areas and litter	3 3 concepresent and rill 6 >40%; from st wetlandd debris	2 2 <1.1 2 2 centrated flot ((extensive erosion); hill hillslopes ream; pond areas and jams are not	1 1 ows e gully lslopes <50 ft ling or litter or ot well
Floodplain Connectivity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; ; shillslopes m; ponding and litter or ire well	7 7 7 runoff is equand rill erosic 50 - 200 ft fror or de	6 6 1.3 6 6 ally sheet and on occurring); m stream; pon bris jams are	5 5 3 - 1.1 5 5 concentrated fl hillslopes 10 - ding or wetland	4 4 ow (minor gully 40%; hillslopes I areas and litter sented	3 3 3 conc present and rill e >40%; from st wetland debris representations and response to the concentration of th	2 2 <1.1 2 2 centrated flot ((extensive erosion); hil hillslopes ream; pond areas and jams are no sented or all	1 1 20ws e gully Islopes <50 ft ing or litter or ot well osent
Floodplain Connectivity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Froposed Condition 6. Vertical Stability Extent	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; ; hillslopes m; ponding and litter or re well led 8 8	7 7 7 runoff is equal and rill erosic 50 - 200 ft from or de	6 6 6 ally sheet and on occurring); in stream; pon obris jams are 6 6 Localize	5 5 3 - 1.1 5 5 concentrated fl hillslopes 10 - ding or wetland minimally representations of the second of the sec	4 4 4 ow (minor gully 40%; hillslopes lareas and litter esented	3 3 3 conc presen and rill 6 >40%; from st wetland debris repres 3 3 Wides	2 2 <1.1 2 2 centrated flict (extensive erosion); hill hillslopes ream; pond areas and jams are no sented or al	1 1 2 2 2 3 3 4 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Floodplain Connectivity (Vertical St	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Proposed Condition Existing Condition Proposed Condition Existing Condition Proposed Condition Existing Condition Existing Condition	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; sheet flow; in illslopes m; ponding and litter or are well ted 8 8 8	7 7 7 runoff is equa and rill erosic 50 - 200 ft fror or de	6 6 6 ally sheet and on occurring); in stream; pon obris jams are 6 6 Localize 6	5 5 3 - 1.1 5 5 concentrated fl hillslopes 10 - ding or wetland minimally representations of the second of the sec	4 4 4 ow (minor gully 40%; hillslopes I areas and litter esented 4 4 4	3 3 conceptes en and rill expression structured debris repression 3 3 Wides 3	2 2 <1.1 2 2 centrated flot (extensive erosion); hil hillslopes ream; pond areas and jams are no sented or at 2 2 spread insta	1 1 2 2 2 3 3 3 4 3 5 5 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition 6. Vertical Stability Extent Existing Condition Proposed Condition	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; sheet flow; hillslopes m; ponding and litter or re well ted 8 8 8	7 7 7 runoff is equal and rill erosic 50 - 200 ft from or de	6 6 6 ally sheet and on occurring); in stream; pon obris jams are 6 6 Localize 6 6	5 5 3 - 1.1 5 concentrated fl hillslopes 10 - ding or wetland minimally representations of the second of the secon	4 4 4 ow (minor gully 40%; hillslopes lareas and litter sented 4 4 4 4	3 3 conceptes en and rill experience of the second debris representations of the seco	2 2 <1.1 2 2 centrated flot (extensive erosion); hil hillslopes seream; pond areas and jams are no sented or at 2 2 spread insta 2 2	1 1 2 2 2 3 3 4 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Proposed Condition Existing Condition Proposed Condition Existing Condition Proposed Condition Existing Condition Existing Condition	10 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9	8 8 8 ed flow; sheet flow; sheet flow; hillslopes m; ponding and litter or re well ted 8 8 8	7 7 7 runoff is equal and rill erosic 50 - 200 ft from or de	6 6 6 ally sheet and on occurring); in stream; pon obris jams are 6 6 Localize 6 6	5 5 3 - 1.1 5 concentrated fl hillslopes 10 - ding or wetland minimally representations of the second of the secon	4 4 4 ow (minor gully 40%; hillslopes I areas and litter esented 4 4 4	3 3 conceptes en and rill experience of the second debris representations of the seco	2 2 <1.1 2 2 centrated flot (extensive erosion); hil hillslopes ream; pond areas and jams are no sented or at 2 2 spread insta	1 1 2 2 2 3 3 3 4 3 5 5 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		Funct	ion-based	d Rapid	Reach Lev	el Stream As	sessment				
						Cat	egory				
sessment arameter	Measurement Method	Fu	ınctioning	,			ng-at-Risk		N	ot Function	onina
ur ur in citor											Jg
	-	Str	eam Fund	ction Py	ramid Leve	3 Geomorp	hology				
Riparian Vegetation (Score = Average of Left and Right bank, max score of 10)	7. Riparian Vegetation Zone (EPA, 1999, modified)	width of vegeta diversity a activities of invasive s	zone exten f >100 feet; ation commund density; do not impa species not or sparse	good unity human ct zone;	composition activities g	n is dominated reatly impact z	width of 25-100 by 2 or 3 specione; invasive sp liter the commur	es; human ecies well	a width no ripai to h	an zone extention of <25 feet of <25 feet of an vegetal uman activity of vegetal invasive	; little c ion du ties;
Ripa e = baı	Left Bank Existing	10	9	8	7	6	5	4	3	2	1
g Sor	Left Bank Proposed		9	8	7	6	5	4	3	2	1
® <u>≅</u>	Right Bank Existing		9	8	7	6	5	4	3	2	1
	Right Bank Proposed	10	9	8	7	6	5	4	3 Domir	2 nate bank e	1 rosion
Lateral Stability (Score =Average of Left and right bank, max score of 10)	8. Dominant Bank Erosion Rate Potential	pot BEHI/NBS	e bank erosi tential is lov or 5 Rating: L/ /H, L/VH, M	v VL, L/L,		ting: M/L, M/M	rate potential is or , M/H, L/Ex, H/L, H/VL, Ex/VL		BEHI/ H/Ex, \	potential is or NBS Rating VH/H, Ex/M H, VH/VH, I	high j: H/H, , Ex/H
Lateral Stability Average of Left Ik, max score of	Existing Condition (Right bank)		9	8	7	6	5	4	3	2	1
Latera Avera k, ma	Proposed Condition (Right Bank)	10	9	8	7	6	5	4	3	2	1
core = bar	Existing Condition (Left bank) Proposed Condition	10	9	8	7	6	5	4	3	2	1
S	(Left Bank)		9	8	7	6	5	4	3	2	1
	9. Lateral Stability Extent		Stable			Localized	Instability		Wide	spread Inst	ability
	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1 1
if stream is ephemeral)		submerged banks, rub and larged stable hab allow full of potential (if are not ne	mix of snad logs, under oble, gravel, rocks, or othe oble and at solonization i.e., logs/snw fall and n	ercut cobble her stage to ags that	of new fall, bu		red for coloniza d of scale)	tion (may rate		sirables ob te unstable	
rean		transient)									
if st	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1
ete	11a. Pool-to-Pool Spacing		4.0 - 5.0	0		-	<u> </u>		9		-
Ідшо	Ratio (Watersheds < 10 mi ²)					3.0 - 4.0 0	or 5.0 - 7.0		<	3.0 or >7.	
not compl		10	9	8	7	3.0 - 4.0 c	or 5.0 - 7.0	4	3	3.0 or >7.	1
(Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition		9	8	7			4			
i ty (Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing	10				6	5		3	2	1
ersity (Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition	10	9			6	5 5		3	2 2	1
rm Diversity (Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth	10	9 5.0 - 7.0 9 9	8	7	6 6 3.5 - 5.0 c 6 6	5 5 or 7.0 - 8.0 5 5	4	3 3	2 2 <3.5 or >8.0 2 2	1 0 1
Bedform Diversity (Do not complete	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition	10 10 10	9 5.0 - 7.0 9 9 >1.5	8 8	7 7 7	6 6 3.5 - 5.0 c 6 6 1.2	5 5 or 7.0 - 8.0 5 5 - 1.5	4 4 4	3 3 3 3	2 2 <3.5 or >8.0 2 2 2 <1.2	1 1 1
Bedform Diversity (Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability Ratio/Depth Variability	10 10 10	9 5.0 - 7.0 9 9 >1.5	8 8	7 7 7	6 6 3.5 - 5.0 6 6 6 1.2 6	5 5 or 7.0 - 8.0 5 5	4 4 4	3 3 3 3	2 2 <3.5 or >8.0 2 2 2	1 1 1
Bedform Diversity (Do not compl	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12c. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 9 >1.2	8 8 8 8	7 7 7 7 7	6 6 3.5 - 5.0 6 6 6 1.2 6 6	5 5 or 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4	3 3 3 3 3 3 3 3 3	2 2 <3.5 or >8.0 2 2 <1.2 2 <1.1 2	1 0 1 1 1
	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 >1.2 9 9	8 8 8 8 8	7 7 7 7 7 7	6 6 3.5 - 5.0 c 6 6 1.2 6 6 1.1	5 5 7 7.0 - 8.0 5 5 - 1.5	4 4 4 4	3 3 3 3 3 3 3 3	2 2 <3.5 or >8.0 2 2 <1.2 2 <1.1	1 0 1 1 1
	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 >1.2 9 9	8 8 8 8 8	7 7 7 7 7 7	6 6 6 3.5 - 5.0 6 6 6 1.2 6 6 6 Streams in C	5 5 5 7 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4	3 3 3 3 3 3 3 3 3	2 2 <3.5 or >8.0 2 2 <1.2 2 <1.1 2	1 0 1 1 1
	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition	10 10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 >1.5 9 9 >1.2 9 Modera	8 8 8 8 8	7 7 7 7 7 7	6 6 6 3.5 - 5.0 6 6 6 1.2 6 6 6 Streams in C	5 5 or 7.0 - 8.0 5 5 - 1.5 - 1.2 5 5 5 clluvial Valleys	4 4 4	3 3 3 3 3 3 3 3 3	2 2 <3.5 or >8.6 2 2 <1.2 2 2 <1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition Proposed Condition 12. Pool Max Depth Ratio/Depth Variability	10 10 10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 9 >1.2 9 Modera 2.0 - 4.0 9 >1.5	8 8 8 8 8 8 te Gradi	7 7 7 7 7 7 ent Perennial 7 7	6 6 6 1.2 6 6 6 Streams in C 4.0 6 6 1.2	5 5 7 7.0 - 8.0 5 5 - 1.5 5 - 1.2 5 5 5 cliuvial Valleys - 6.0 5 - 1.5	4 4 4 4 4 4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 3.5 or >8.4 2 2 2 41.2 2 2 41.1 2 2 2 41.1 2 2 2 41.1 2 2 41.1 2 2 41.1 2 2 41.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bedform Diversity (Do not complete if Bedform Diversity (Do not compl stream is ephemeral)	Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 10 10 10	9 5.0 - 7.0 9 9 >1.5 9 >1.5 9 9 >1.2 9 Modera 2.0 - 4.0 9 9	8 8 8 8 8 8 8 8	7 7 7 7 7 7 7 ent Perennial	6 6 6 1.2 6 6 6 Streams in C 6 6 6	5 5 7 7.0 - 8.0 5 5 - 1.5 - 1.2 5 5 - 5 - 1.2 5 5 - 5 - 6.0 5 5	4 4 4 4 4 4	3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 3.5 or >8.6 2 2 41.2 2 41.1 2 2 2 >6.0 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reach ID:	Trib 1	Reach Score/Reach Total Ex. 24/170 Prop.: 136/							Quality	y: Ex: 0.14 P	rop:0.8	
		Funct	ion-base	d Rapid	Reach Lev	el Stream Ass	essment					
Assessment						Categ	jory					
Parameter	Measurement Method	Fu	ınctionin	g		Functioning	g-at-Risk		N	ot Function	oning	
		Str	eam Fund	ction Py		4 Physicoche						
Water Quality and Nutrients (Do not complete if stream is ephemeral)	13. Water Appearance and Nutrient Enrichment (USDA 1999)	colored; of depth 3 to colored); r surface; no submerger Clear wate reach; dive community quantities	, or clear b jects visib 6 ft (less if ooil sheer o noticeabld d objects or er along en er along en er se aquati vincludes l of many spees; little algisent	le at f slightly n on e film on r rocks. tire ic plant ow pecies of	visible to dep	idiness especially th 0.5 to 3.0 ft; m on water surfac er along entire re on stream s	ht green color; ar or slightly	appearance most of the time; objects visible at				
Ž	Existing Condition Proposed Condition	10 10	9	8	7	6	5 5	4	3	2	1	
Vater Quality a	14. Detritus (Petersen, 1992) Existing Condition	and wood	onsisting of d without se covering it		Leaves an	d wood scarce; fir sedim		ebris without	3 2 1 Fine organic sediment - black in color and foul odor (anaerobic) or detritus absent			
>	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
Str	eam Function Pyramid	Level 4 F	Physicoc	hemica	Overall EX	STING Condit	ion F	FAR NF		Score:4		
Stre	eam Function Pyramid	Level 4 P	hysicoch	emical	Overall PRO	POSED Cond	ition F	FAR NF		Score:16		
			Stream	Function	on Pyramid	Level 5 Biolog	у					
. <u>s</u>	15. Macroinvertebrate		Abundant			Rare				Not present		
am	Existing Condition	10	9	8	7	6	5 5	4	3	2	1	
Biology (Do not complete if stream is ephemeral)	Proposed Condition 16. Macroinvertebrate Tolerance	10 Abundant	9 intolerant	8 species	,	Limited intoler		4	3 Only	tolerant spe	1 ecies	
iolo	Existing Condition	10	9	8	7	6	5	4	3	2	1	
ep Gom	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
ot	17. Fish Presence		Abundant		_	Rare				Not present		
0	Existing Condition	10 10	9	8	7	6	5 5	4	3	2	1	
_	Proposed Condition If existing biology is FAR or NF, provide description of cause(s)		currently pi		/	6	5	4	4	2	1	
St	ream Function Pyramic	Level 5	Biology (Overall	EXISTING C	ondition F	FAR	VF.	S	core: 3		

Reach ID:	Trib 1		Reach Score/Reach Total	Ex. 24/170 Prop.: 136/170	Quality: Ex: 0.14 Prop:0.8
		Function-based Rapi	d Reach Level Stream A	ssessment	
Assessment	Measurement Method			egory	Note of the
Parameter		Functioning		ing-at-Risk	Not Functioning
		Bankfull Determination	n and Rosgen Stream Cla	assification	
Rosgen Stream T	ype (Observation) EX - Stre	am is currently piped PRO - C)		
Regional Curve (· · · · · · · · · · · · · · · · · · ·	t Coastal Plain	Allegheny Plateau/Ridge	and Valley Urban	Karst
DA (sqmi)	0.15			DE 4 (6)	0.7.4.4
BF Width (ft) BF Depth (ft)	5.6-7.1 0.48-0.62			BF Area (sqft) Percent Impervious (%)	2.7-4.4 21.3
Di Doptii (it)	0.40 0.02			T Grociit imporvious (78)	121.0
		Fiel	d Measurements		
- I	Parameter		Measureme	nts and Ratios	
Water surface to elevation differen	geomorphic feature ce	Ex- Channel is piped Upstream Reference:			
Riffle Mean Deptl	n at Bankfull Stage (dbkf)	0.3-0.7; avg: 0.51 Ex- Channel is piped Upstream Reference: 0.32-0.65; avg.: 0.54	Proposed: 0.39 & 0.49		
Riffle Width at Ba	nkfull Stage (Wbkf)	Ex- Channel is piped Upstream Reference: 4.7-8.1; avg.: 6.48	Proposed: 5.0 & 6.6		
Riffle XS Area at (Abkf = dbkf*Wb		Ex- Channel is piped Upstream Reference: 2.5-4.3; avg.: 3.40	Proposed: 1.95 & 3.24		
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Ex- Channel is piped Upstream Reference: 6.0-9.1; avg.: 8.4	Target: 20 & 26.4		
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Ex- Channel is piped Upstream Reference: 1.12-1.45; avg.: 1.31	Target 4.0		
Low Bank Height	(LBH)	Ex- Channel is piped Upstream Reference: 0.96-3.75; avg.: 2.51	Proposed: 2.3 & 2.4		
Riffle Maximum D (Dmax)	epth at Bankfull Stage	Ex- Channel is piped Upstream Reference: 0.42-1.10; avg.: 0.82	Proposed: 0.5 & 0.6		
Bank Height Rat (BHR=LBH/Dmax		Ex- Channel is piped Upstream Reference: 2.3-3.6; avg.: 2.9	Proposed: 1.0		
BEHI/NBS Rating	s and Lengths	Ex- Channel is piped	L/L		
Pool to Pool Space	cing (P-P)	Ex- Channel is piped	Proposed: Min: 21, Max: 46, Avg.: 34		
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- sf)	Ex- Channel is piped	Proposed: Min:3.2, Max:7.3, Avg.:5.6		
Pool Maximum De (Dmbkfp)	epth at Bankfull Stage	Ex- Channel is piped	Proposed: 1.0 & 1.2		
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp bkf)	Ex- Channel is piped	Proposed: 2.5		
Macroinvertebrate	e Taxa Observed	Ex- Channel is piped	n/a		

	EXISTING a	nd PROPOS RAPID AS		ACH LEVE MENT FIEI			TION-BAS	ED		
Watershed:	Middle Potomac - Catoctin			Rater(s):		RC/BW				
Stream:	Un -Named Tributary to Cabin	Branch		Date:		3/10/2022				
Reach Length:	421 linear feet			Latitude:		39.177353				
Photo(s):	See Attached			Longitude:		-77.199137				
Reach ID:	Trib 2	 I		•	Booch Total	Ex. 24/170 Pro	m : 426/470	Quality	: Ex: 0.14 P	ron:0 8
teach ib.	THIS Z	Function-bas	ed Rapic	d Reach Leve			pp 136/170	<u></u>		. орионо
					Cat	tegory				
Assessment Parameter	Measurement Method	Function	ing			ing-at-Risk		No	ot Functio	ning
		5	tream Fu	unction Pyrar	mid Level 1	Hydrology				
	1. Concentrated Flow	No potential for co flow/impairmer adjacent land	nts from		e, however, m	ated flow/impair easures are in p ources		flow/imp	al for conce pairments to ation site an ents are in	reach nd no
	Existing Condition	10 9	8	7	6	5	4	3	2	1
5 =	Proposed Condition		8	7	6	5	4	3	2	1
Runoff	2. Flashiness	Non-flashy flow re result of rainfall geology, and impervious cover 6%	patterns, soils,			s a result of rain		result o geol impervi	r flow regiment frainfall particularly floogy, and solitous cover gothern 15%	itterns, oils,
	Existing Condition	10 9	8	7	6	5	4	3	2	1
	Proposed Condition	10 9	8	7	6	5	4	3	2	1
	Stream Function Pyran	nid Level 1 Hydr	ology Ov	erall EXISTIN	NG Conditio	n F FA	R NF	Sco	re:5	
	Stream Function Pyram	id Level 1 Hydr	ology Ove	erall PROPO	SED Condit	ion F FAF	R NF	Scor	re:11	
	<u> </u>		tream Fu	ınction Pyran	nid Level 2	Hydraulics				
	3. Bank Height Ratio (BHR)	<1.20			1.21	- 1.50			>1.50	
	Existing Condition	10 9	8	7	6	5	4	3	2	1
bility)	Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA	10 9 >2.2	8	7	6	5	4	3	2	1
Sta	Streams)				2.1	- 1.4			<1.4	
_	Existing Condition									
g		10 9	8	7	6	5	4	3	2	1
ty (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial	10 9 10 9 >1.4	8	7 7	6		4 4	3		1
tivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 9 >1.4	8	7	6 6	5 5 - 1.1	4	3	2 2 <1.1	
nectivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition	10 9			6	5 5 1.1		3	2 2 <1.1	1 1 1
Floodplain Connectivity (Vertical Stability)	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 9 >1.4	8 8 8 ed flow; sheet flow; hillslopes m; ponding and litter or re well	7 7 7 runoff is equa and rill erosic 50 - 200 ft fron	6 6 6 ally sheet and on occurring); in stream; pond	5 5 - 1.1	4 4 4 www (minor gully 0%; hillslopes areas and litter	3 3 conc presen and rill 6 >40%; from st wetland debris	2 2 <1.1 2 2 centrated float (extensive	1 1 ows e gully Islopes <50 ft ling or litter or ot well
Floodplain Connectivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; > 200 ft from streau or wetland areas a debris jams al	8 8 8 ed flow; sheet flow; hillslopes m; ponding and litter or re well	7 7 7 runoff is equa and rill erosic 50 - 200 ft fron	6 6 6 ally sheet and on occurring); in stream; pond	5 5 1-1.1 5 5 concentrated flot hillslopes 10 - 4 ding or wetland	4 4 4 www (minor gully 0%; hillslopes areas and litter	3 3 conc presen and rill 6 >40%; from st wetland debris	2 2 <1.1 2 2 centrated flict (extensive erosion); hill; hillslopes tream; ponc areas and jams are not	1 1 ows e gully Islopes <50 ft ling or litter or ot well
Floodplain Connectivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; >200 ft from stream or wetland areas a debris jams an represent	8 8 8 ed flow; sheet flow; hillslopes m; ponding and litter or re well	7 7 7 runoff is equa and rill erosic 50 - 200 ft fron or de	6 6 6 ally sheet and on occurring); In stream; poncbris jams are r	5 5 5 concentrated florhillslopes 10 - 4 ding or wetland ninimally repres	4 4 4 ww (minor gully 0%; hillslopes areas and litter sented	3 3 conc presen and rill 6 >40%; from st wetland debris repres	2 2 <1.1 2 2 centrated flot (extensive erosion); hill; hillslopes tream; ponc areas and jams are no sented or al	1 1 2 2 3 3 3 4 5 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Floodplain Connectivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Order Condition Proposed Condition Proposed Condition Resisting Condition Proposed Condition Order Condition Resisting Condition Proposed Condition Order Condition Resisting Condition Proposed Condition Resisting Condition	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; >200 ft from streau or wetland areas a debris jams a represent 10 9 10 9 Stable	8 8 8 8 8 d flow; sheet flow; sheet flow; hillslopes m; ponding and litter or re well ed 8 8	7 7 7 runoff is equa and rill erosic 50 - 200 ft from or de	6 6 1.3 6 6 ally sheet and on occurring); in stream; poncibris jams are r	5 5 5 concentrated flohillslopes 10 - 4 ding or wetland minimally repres	4 4 4 www(minor gully 0%; hillslopes areas and litter sented	3 concepted and rill expression and rill expression wetland debris repression 3 3 Wides	2 2 <1.1 2 2 centrated flit it (extensive erosion); hil; hillslopes tream; pond jams are n, sented or al 2 2 spread Insta	1 1 2 2 3 3 4 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Floodplain Connectivity (Vertica	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition Existing Condition Condition Existing Condition	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; >200 ft from streau or wetland areas a debris jams ai represent 10 9 10 9 Stable 10 9	8 8 8 8 8 8 d flow; sheet flow; hillslopes m; ponding and litter or re well ed 8 8	7 7 7 runoff is equa and rill erosic 50 - 200 ft from or de	6 6 1.3 6 6 ally sheet and on occurring); in stream; pondibris jams are r	5 5 5 concentrated flohillslopes 10 - 4 ding or wetland minimally repres	4 4 4 0w (minor gully 0%; hillslopes areas and litter sented	3 3 conc presen and rill 6 >40%; from st wetland debris repres 3 Wides 3	2 2 <1.1 2 2 centrated flott (extensive erosion); hil; hillslopes tream; pond areas and jams are no sented or al 2 2 spread Insta	1 1 2 2 3 3 3 4 5 5 5 6 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8
	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition 6. Vertical Stability Extent Existing Condition Proposed Condition	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; >200 ft from streau or wetland areas a debris jams al represent 10 9 10 9 Stable 10 9	8 8 8 8 8 ed flow; sheet flow; hillslopes m; ponding and litter or re well ed 8 8 8	7 7 7 runoff is equa and rill erosic 50 - 200 ft fron or de 7 7 7	6 6 6 1.3 6 6 ally sheet and on occurring); in stream; pondibris jams are r	5 5 5 concentrated flothillslopes 10 - 4 ding or wetland minimally representations 5 5 d Instability 5 5	4 4 4 www(minor gully 0%; hillslopes areas and litter sented 4 4 4 4	3 3 concepted and rill 6 >40%; from st wetland debris repres 3 Wides 3 3	2 2 <1.1 2 2 centrated flott (extensive erosion); hilr hillslopes tream; ponc areas and jams are no sented or al 2 2 spread insta	1 1 2 2 3 3 4 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition Existing Condition Condition Existing Condition	10 9 >1.4 10 9 10 9 no concentrate runoff is primarily hillslopes < 10%; >200 ft from streau or wetland areas a debris jams al represent 10 9 10 9 Stable 10 9	8 8 8 8 8 8 ed flow; sheet flow; hillslopes m; ponding and litter or re well ed 8 8 8	7 7 7 runoff is equa and rill erosic 50 - 200 ft fron or de 7 7 7	6 6 6 1.3 6 6 ally sheet and on occurring); in stream; pondibris jams are r	5 5 5 concentrated flohillslopes 10 - 4 ding or wetland minimally repres	4 4 4 www(minor gully 0%; hillslopes areas and litter sented 4 4 4 4	3 3 concepted and rill 6 >40%; from st wetland debris repres 3 Wides 3 3	2 2 <1.1 2 2 centrated flott (extensive erosion); hil; hillslopes tream; pond areas and jams are no sented or al 2 2 spread Insta	1 1 2 2 3 3 3 4 5 5 5 6 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8

		Funct	ion-base	d Rapid	Reach Lev	el Stream As	sessment				
	ı						gory				
sessment arameter	Measurement Method	E.	ınctioning	n .			ng-at-Risk		N	ot Function	nina
aranneter										ot i uncu	Jilling
		Str	eam Fun	ction Py	yramid Leve	I 3 Geomorp	hology				
Riparian Vegetation (Score = Average of Left and Right bank, max score of 10)	7. Riparian Vegetation Zone (EPA, 1999, modified)	width of vegeta diversity a activities of invasive s	zone exten f >100 feet; ation commi and density do not impa species not or sparse	good unity ; human act zone;	composition composition composition activities (ne extends to a von is dominated greatly impact zoncesented and a	by 2 or 3 speci- one; invasive sp	es; human pecies well	a width no ripai to h	an zone extended of <25 feet rian vegetat uman activity of vegetatinvasive	; little c ion du ties;
tipa e = bar	Left Bank Existing	10	9	8	7	6	5	4	3	2	1
ght	Left Bank Proposed		9	8	7	6	5	4	3	2	1
S E	Right Bank Existing		9	8	7	6	5	4	3	2	1
	Right Bank Proposed	10	9	8	7	6	5	4	3 Domir	2 nate bank e	1 rocion
Lateral Stability (Score =Average of Left and right bank, max score of 10)	8. Dominant Bank Erosion Rate Potential	pot BEHI/NBS	e bank eros tential is lov or S Rating: L/ ./H, L/VH, N	w VL, L/L,		e bank erosion r c ating: M/L, M/M, H/L, H/M, V	or M/H, L/Ex, H/L,		rate BEHI/ H/Ex, \	potential is or NBS Rating VH/H, Ex/M H, VH/VH, I	high j: H/H, , Ex/H
II Stab ye of L x score	Existing Condition (Right bank)		9	8	7	6	5	4	3	2	1
Lateral Stability Average of Left nk, max score of	Proposed Condition (Right Bank)	10	9	8	7	6	5	4	3	2	1
core = bar	Existing Condition (Left bank) Proposed Condition	10	9	8	7	6	5	4	3	2	1
8)	(Left Bank)		9	8	7	6	5	4	3	2	1
	9. Lateral Stability Extent		Stable			Localized	Instability		Wide	spread Inst	ability
	Existing Condition Proposed Condition		9	8	7	6	5 5	4 4	3	2 2	1 1
if stream is ephemeral)		submerged banks, rub and larged stable hab allow full of potential (if are not ne	mix of snad logs, undo ble, gravel, rocks, or ot bitat and at scolonization i.e., logs/snw fall and n	ercut , cobble ther stage to nags that	an, pe	it not yet prepa at high en				sirables ob te unstable	
ea II		transient)									
if str	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1
omplete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi ²)		4.0 - 5.0	8	7	3.0 - 4.0 o	-	4		3.0 or >7.	-
5	Existing Condition	10	9	8	7	6	5	4	3	2	1
ē	Existing Condition		9	8	7	6	5	4	3	2	1
(До по	Proposed Condition	10		_					1	<3.5 or >8.0	0
ity (Do no	Proposed Condition 11b. Pool-to-Pool Spacing		5.0 - 7.0			3.5 - 5.0 a	r 7.0 - 8.0		<	3.5 Or >0.0	
ersity (Do not	Proposed Condition		5.0 - 7.0	8	7	3.5 - 5.0 a	7.0 - 8.0	4	3	2 2	1
Diversity (Do no	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition	10		8	7			4 4			
dform Diversity (Do not	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition	10	9			6	5		3	2	
Bedform Diversity (Do not complete	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition	10 10	9			6	5 5		3	2	1
Bedform Diversity (Do no	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10	9 9 >1.5 9 9 >1.2	8 8	7 7 7	6 6 6 6 6	5 5 - 1.5 5 - 1.2	4	3 3 3 3	2 2 <1.2 2 2 <1.1	1
Bedform Diversity, (Do no	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition	10 10 10 10 10	9 9 >1.5 9 9 >1.2	8 8	7 7 7	6 6 6 6 1.1	5 5 - 1.5 - 5 - 1.2	4 4 4	3 3 3 3 3	2 2 <1.2 2 2 <1.1	1 1
	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10 10 10	9 9 >1.5 9 9 >1.2	8 8 8	7 7 7 7	6 6 1.2 · 6 6 1.1 ·	5 5 -1.5 5 5 -1.2	4 4 4	3 3 3 3	2 2 <1.2 2 2 <1.1	1 1 1
	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition	10 10 10 10 10	9 9 >1.5 9 9 >1.2 9 Modera	8 8 8	7 7 7 7	6 6 6 1.1 6 6 6 Streams in Co	5 5 -1.5 -5 -1.2 -5 5 5 5	4 4 4	3 3 3 3 3	2 2 <1.2 2 2 <1.1 2 2	1 1 1
	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition	10 10 10 10 10	9 9 >1.5 9 9 >1.2	8 8 8	7 7 7 7	6 6 6 1.1 6 6 6 Streams in Co	5 5 -1.5 5 5 -1.2	4 4 4	3 3 3 3 3	2 2 <1.2 2 2 <1.1	1 1 1 1
	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 10 10	9 9 >1.5 9 9 >1.2 9 Modera 2.0 - 4.0	8 8 8 8 ate Gradi	7 7 7 7 7 ent Perennial	6 6 6 1.2 4.0 6 6 6	5 5 -1.5 -5 -1.2 -5 5 5 5 5 5 5 5 5 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4	3 3 3 3 3	2 2 <1.2 2 2 <1.1 2 2 >6.0	1 1 1 1
	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition	10 10 10 10 10 10 10	9 9 >1.5 9 9 >1.2 9 Modera 2.0 - 4.0 9 9	8 8 8 8 8 8	7 7 7 7 ent Perennial	6 6 6 1.2 4.0 6 6 6	5 5 -1.5 -5 -1.2 -5 5 5 -6.0 -5 5	4 4 4	3 3 3 3 3 3 3 3	2 2 2 <1.2 2 2 <1.1 2 2 >6.0 2	1 1 1
Bedform Diversity (Do not complete if Bedform Diversity (Do no stream is ephemeral)	Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition 12. Pool Max Depth Ratio/Depth Variability	10 10 10 10 10 10 10	9 9 >1.5 9 9 >1.2 9 Modera 2.0 - 4.0 9 9 >1.5	8 8 8 8 8 ate Gradi	7 7 7 7 ent Perennial 7 7	6 6 6 Streams in Co 6 6 6 1.2 ·	5 5 5 -1.5 -1.2 5 5 -5 -6.0 5 -1.5	4 4 4 4 4	3 3 3 3 3 3 3	2 2 <1.2 2 2 <1.1 2 2 2 >6.0 2 2 <1.2	1 1 1 1 1 1

each ID:	Trib 2]			Reach Score	Reach Total Ex	c. 24/170 Prop	o.: 136/170	Qualit	y: Ex: 0.14 P	rop:0.8	
		Funct	ion-base	d Rapid	I Reach Lev	el Stream Ass	essment					
Assessment	Management Mathead					Categ	ory					
Parameter	Measurement Method	Fu	ınctioning	9		Functioning	j-at-Risk		N	ot Function	ning	
		Str	eam Fund	tion Py	ramid Leve	4 Physicoche	mical					
	13. Water Appearance and Nutrient Enrichment (USDA 1999)	colored; o depth 3 to colored); I surface; n submerge Clear water reach; div communities	, or clear bi bjects visible 6 ft (less if no oil sheer o noticeable d objects or er along ent erse aquativ includes le of many sp tes; little alg esent	e at slightly on e film on rocks. ire c plant ow ecies of	visible to dep	Frequent cloudiness especially after storm events; objects visible to depth 0.5 to 3.0 ft; may have slight green color; no oil sheen on water surface. Fairly clear or slightly greenish water along entire reach; moderate algal growth on stream substrate					ly f the at moving green; algal , t of strong bil, brown each; ng il ck algal	
ž	Existing Condition	10	9	8	7	6	5	4	3	2	1	
ter Quality a	Proposed Condition 14. Detritus (Petersen, 1992)	and woo	9 onsisting of d without se covering it		7 Leaves an	6 d wood scarce; fin sedime		4 oris without	3 2 1 Fine organic sediment - black in color and foul odor (anaerobic) or detritus absent			
Nat	Existing Condition	10	9	8	7	6	5	4	3 2			
	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
Str	eam Function Pyramid	Level 4	Physicocl	nemica	l Overall EX	STING Conditi	on F F	AR NF		Score:4		
Stre	am Function Pyramid	Level 4 P	hysicoch	emical	Overall PRO	POSED Condi	tion F F	AR NF		Score:16		
			Stream	Function	on Pyramid	Level 5 Biology	/					
n is	15. Macroinvertebrate		Abundant		7	Rare		4	_	Not present		
rean	Existing Condition Proposed Condition	10 10	9	8	7	6	5 5	4	3	2	1	
Biology (Do not complete if stream is ephemeral)	16. Macroinvertebrate Tolerance		t intolerant		,	Limited intolera		-	1	tolerant spe		
n ple	Existing Condition	10	9	8	7	6	5	4	3	2	1	
de de	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
not	17. Fish Presence Existing Condition	10	Abundant 9	8	7	Rare 6	5	4	3	Not present 2	1	
(Do	Proposed Condition		9	8	7	6	5	4	4	2	1	
	If existing biology is FAR or NF, provide description of cause(s)		currently pi	ped.	1				ı			
St	ream Function Pyramic	d Level 5	Biology (Overall	EXISTING C	ondition F	FAR N	F	S	core: 3		
	ream Function Pyramic						FAR N			core:24		

	_	•			
Reach ID:	Trib 2	Function-based Rapid	Reach Score/Reach Total d Reach Level Stream A	·	Quality: Ex: 0.14 Prop:0.8
A	 			egory	
Assessment Parameter	Measurement Method	Functioning		ing-at-Risk	Not Functioning
		Bankfull Determination	n and Rosgen Stream Cla	assification	
Rosgen Stream T	ype (Observation) EX - Stre	am is currently piped PRO - C	;		
Regional Curve (circle one): Piedmon	t Coastal Plain	Allegheny Plateau/Ridge	and Valley Urban	Karst
DA (sqmi)	0.02			DE A (#)	0.04.4
BF Width (ft) BF Depth (ft)	2.3-3.3 0.25-0.32			BF Area (sqft) Percent Impervious (%)	0.6-1.1 21.3
				[·	1
		Fiel	d Measurements		
F	^o arameter		Measureme	nts and Ratios	
Water surface to elevation differen	geomorphic feature ce	Ex- Channel is piped			
Riffle Mean Depth	n at Bankfull Stage (dbkf)	Ex- Channel is piped	Proposed: 0.24		
Riffle Width at Ba	nkfull Stage (Wbkf)	Ex- Channel is piped	Proposed: 3.2		
Riffle XS Area at (Abkf = dbkf*Wb	•	Ex- Channel is piped	Proposed: 0.78		
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Ex- Channel is piped	Target: 12.8		
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Ex- Channel is piped	Target 4.0		
Low Bank Height	t (LBH)	Ex- Channel is piped	Proposed: 0.35		
Riffle Maximum D (Dmax)	epth at Bankfull Stage	Ex- Channel is piped	Proposed: 0.35		
Bank Height Rat (BHR=LBH/Dmax		Ex- Channel is piped	Proposed:1.0		
BEHI/NBS Rating	s and Lengths	Ex- Channel is piped	L/L		
Pool to Pool Space	cing (P-P)	Ex- Channel is piped	Proposed: Min: 16, Max: 24, Avg.: 20		
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- kf)	Ex- Channel is piped	Proposed: Min:5, Max:7.5, Avg.:6.3		
Pool Maximum De (Dmbkfp)	epth at Bankfull Stage	Ex- Channel is piped	Proposed: 0.6		
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp bkf)	Ex- Channel is piped	Proposed:2.5		
Macroinvertebrate	e Taxa Observed	Ex- Channel is piped	n/a		

			ASSESSI		_	_	CTION-BAS	Eυ		
atershed:	Middle Potomac - Catoctin			Rater(s):		RC/BW				
eam:	Un -Named Tributary to Cabin	Branch		Date:		3/10/2022				
ch Length:	8016 linear feet			Latitude:		39.177353				
oto(s):	See Attached			Longitude:		-77.199137				
ach ID:	Trib 3]		Reach Score/F	Peach Total		Prop : 136/170	Quality:	Ex: 0.14 P	rop:0.8
ich ib.	THE C	I Function	n-based Rapid				•	<u></u>		. ор. о.
					Cat	tegory				
ssessment Parameter	Measurement Method	Func	tioning			ing-at-Risk		No	t Functio	ning
			Stream Fu	unction Pyran	nid Level 1	Hydrology				
	Concentrated Flow	flow/impai	for concentrated irments from nt land use		e, however, m		airments to reach	flow/imp restora	I for conce airments to ation site ar ents are in	reach
	Existing Condition	10	9 8	7	6	5	4	3	2	1
±	Proposed Condition	10	9 8	7	6	5	4	3	2	1
Runoff	2. Flashiness	result of rai geology impervious c	ow regime as a infall patterns, and soils, cover less than 6%	geology		npervious cove		result of geole impervio	flow regime f rainfall pa ogy, and so ous cover g than 15%	tterns, oils,
	Existing Condition	10	9 8	7	6	5	4	3	2	1
	Proposed Condition	10	9 8	7	6	5	4	3	2	1
	Stream Function Pyram	nid Level 1 H	Hydrology Ov	erall EXISTIN	IG Conditio	n F F	AR NF	Sco	re:5	
	Stream Function Pyram	id Level 1 H	lydrology Ov	erall PROPOS	SED Condit	ion F F	AR NF	Scor	e:11	
			Stream Fu	ınction Pyran	nid Level 2	Hydraulics				
	Bank Height Ratio (BHR)		1.20			l - 1.50			>1.50	
	Existing Condition	10	9 8	7	6	5	4	3	2	1
_	Proposed Condition	10	9 8		^	_			_	
ج ج	4 = 1 1 1			7	6	5	4	3	2	1
Stabilif	4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams)	>	>2.2	7		5	4	3	2 <1.4	1
al Stabilit	(Meandering streams in alluvial valleys or Rosgen C, E, DA		·2.2 9 8	7		l - 1.4 5	4	3		1
rtical Stabilií	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams)	10			2.1	l - 1.4	·		<1.4	
vity (Vertical Stabilií	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition	10	9 8	7	2.1 6 6	l - 1.4 5	4	3	<1.4	1
ctivity (Vertical Stabilif	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial	10 10 >	9 8 9 8	7 7	2.1 6 6 1.3	5 5 3-1.1	4 4	3 3	<1.4 2 2 <1.1	1
nnectivity (Vertical Stabilif	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 10	9 8 9 8	7 7	6 6 1.3	5 5 5	4 4	3 3	<1.4 2 2 2 <1.1	1
Floodplain Connectivity (Vertical Stability)	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition	10 10 10 10 10 no concer runoff is prim hillslopes < 3 >200 ft from s or wetland and debris jar	9 8 9 8 	7 7 7 7 runoff is equa and rill erosio 50 - 200 ft from	2.1 6 6 6 1.3 6 6 n occurring);	5 5 5 3 - 1.1 5 concentrated hillslopes 10 -	4 4 4 flow (minor gully 40%; hillslopes d areas and litter	3 3 3 conce present and rill e >40%; from str wetland debris	<1.4 2 2 <1.1	1 1 1 1 ows e gully Islopes <50 ft ling or litter oot well
Floodplain Connectivity (Vertical Stabilit	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition	10 10 10 10 10 no concer runoff is prim hillslopes < '>200 ft from s or wetland ar debris jar repre	9 8 9 8 1-1.4 9 8 9 8 ntrated flow; larily sheet flow; larily sheet flow; stream; ponding geas and litter or ms are well	7 7 7 7 runoff is equa and rill erosio 50 - 200 ft from	2.1 6 6 6 1.3 6 6 n occurring);	5 5 3 - 1.1 5 5 concentrated hillslopes 10 - ding or wetlan	4 4 4 flow (minor gully 40%; hillslopes d areas and litter	3 3 3 conce present and rill e >40%; from str wetland debris	<1.4 2 2 <1.1 2 2 entrated flot ((extensive rosion); hilh hillslopes ream; pondarareas and jams are not jam	1 1 1 1 ows e gully Islopes <50 ft ling or litter oot well
Floodplain Connectivity (Vertical Stabilit	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage	10 10 10 10 10 no concer runoff is prim hillslopes < '>>200 ft from sor wetland ar debris jar repre	9 8 9 8 1-1.4 9 8 9 8 9 8 Intrated flow; sarily sheet flow; 10%; hillslopes stream; ponding eas and litter or ms are well essented	7 7 7 runoff is equa and rill erosio 50 - 200 ft from or del	2.1 6 6 6 1.3 6 6 6 Illy sheet and n occurring); n stream; pone or is jams are in	5 5 5 3 - 1.1 5 5 concentrated hillslopes 10 - ding or wetlan minimally repr	4 4 4 flow (minor gully 40%; hillslopes d areas and litter esented	3 3 3 concepresent and rill e >40%; from stu wetland debris represent	<1.4 2 2 <1.1 2 2 entrated flot ((extensiverosion); hil hillslopes ream; pondareas and iams are no ented or at	1 1 1 1 vws e gully Islope: <50 ft ling or litter o ot well
Floodplain Connectivity (Vertical Stabilit	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition	10 10 10 10 10 no concer runoff is prim hillslopes < '>>200 ft from sor wetland ar debris jar representation of the concern of	9 8 9 8 1.4 9 8 9 8 ntrated flow; arily sheet flow; hillslopes stream; ponding reas and litter or ms are well esented	7 7 7 runoff is equa and rill erosio 50 - 200 ft from or del	2.1 6 6 6 1.3 6 6 6 Illy sheet and in occurring); in stream; poneoris jams are in 6 6 Localizer	5 5 5 5 concentrated hillslopes 10 ding or wetlan minimally repr	4 4 4 4 flow (minor gully 40%; hillslopes d areas and litter esented	3 3 3 concc present and rill e >40%; from str wetland debris repres 3 3	<1.4 2 2 <1.1 2 2 entrated flot ((extensive rosion); hill hillslopes ream; pond areas and jams are no ented or al	1 1 1 1 1 1 1 style="background-color: lighter;">1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Floodplain Connectivity (Vertical Stabilli	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Existing Condition Condition Proposed Condition Proposed Condition Proposed Condition Existing Condition Condition Proposed Condition	10 10 10 10 10 no concer runoff is prim hillslopes < >200 ft from s or wetland ar debris jar repres	9 8 9 8 1-1.4 9 8 9 8 ntrated flow; arrily sheet flow; 10%; hillslopes stream; ponding reas and litter or rms are well esented 9 8 9 8 table 9 8	7 7 7 runoff is equa and rill erosio 50 - 200 ft from or del	2.1 6 6 6 1.3 6 6 6 sllly sheet and in occurring); in stream, ponioris jams are in 6 6 Localizer 6	5 5 5 5 concentrated hillslopes 10 ding or wetlan minimally repr	4 4 4 flow (minor gully 40%; hillslopes d areas and litter esented	3 3 concepresent and rill eyelong the set of	<1.4 2 2 <1.1 2 entrated flit (extensive rosion); hill hillslopes seream; pond areas and jams are no ented or at 2 2 pread Insta	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Existing Condition 6. Vertical Stability Extent	10 10 10 10 10 no concer runoff is prim hillslopes < > >200 ft from s or wetland ar debris jar representation of the second of t	9 8 9 8 1-1.4 9 8 9 8 ntrated flow; arrily sheet flow; 10%; hillslopes stream; ponding reas and litter or rms are well esented 9 8 9 8 table 9 8	7 7 7 runoff is equa and rill erosio 50 - 200 ft from or del	2.1 6 6 6 1.3 6 6 6 sllly sheet and an occurring); in stream; ponoris jams are in the control of	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 flow (minor gully 40%; hillslopes d areas and litter esented	3 3 3 concc present and rill e >40%; from str wetland debris repres 3 3 Wides	<1.4 2 2 <1.1 2 entrated flict (extensive rosion); hill hillslopes ream; pond arreas and lams are not ented or al 2 2 pread Insta	1 1 1 1 1 1 1 1 1 the set of the

		Functi	ion-based	Rapid	Reach Leve	el Stream A	ssessment				
	ı			- 1			egory				
sessment arameter	Measurement Method	Fu	ınctioning				ng-at-Risk		N	ot Function	nina
aranneter									141	ot i unctio	Jilling
		Str	eam Func	tion Py	yramid Level	3 Geomorp	hology				
Riparian Vegetation (Score = Average of Left and Right bank, max score of 10)	7. Riparian Vegetation Zone (EPA, 1999, modified)	width of vegeta diversity a activities d invasive s	zone extend f >100 feet; g ation commu and density; do not impact species not p or sparse	good nity human ct zone;	compositio activities g	n is dominated reatly impact z	width of 25-100 I by 2 or 3 speci one; invasive sp alter the commur	es; human ecies well	a width no ripar to h	an zone externof <25 feet; ian vegetat uman activity of vegeta invasive	; little o ion du ties;
tipa e = bar	Left Bank Existing	10	9	8	7	6	5	4	3	2	1
ght	Left Bank Proposed		9	8	7	6	5	4	3	2	1
<u>ي چ</u>	Right Bank Existing		9	8	7	6	5	4	3	2	1
	Right Bank Proposed	10	9	8	7	6	5	4	3 Domir	2 nate bank e	1 rocion
Lateral Stability (Score =Average of Left and right bank, max score of 10)	8. Dominant Bank Erosion Rate Potential	pote BEHI/NBS	e bank erosion dential is low or B Rating: L/\ /H, L/VH, M	/ /L, L/L,		ting: M/L, M/M	rate potential is or , M/H, L/Ex, H/L, /H/VL, Ex/VL		BEHI/ H/Ex, \	potential is or NBS Rating VH/H, Ex/M H, VH/VH, E	high j: H/H, , Ex/H
Lateral Stability Average of Left ik, max score of	Existing Condition (Right bank)		9	8	7	6	5	4	3	2	1
Later: -Avera nk, ma	Proposed Condition (Right Bank)	10	9	8	7	6	5	4	3	2	1
score =	Existing Condition (Left bank) Proposed Condition	10	9	8	7	6	5	4	3	2	1
9)	(Left Bank)		9	8	7	6	5	4	3	2	1
	9. Lateral Stability Extent		Stable				Instability			spread Inst	
	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1 1
if stream is ephemeral)		banks, rubl and large r stable habi allow full co potential (i.	d logs, under ble, gravel, rocks, or other itat and at section i.e., logs/snaw fall and no	cobble ner tage to ags that		at high er	nd of scale)		substrat lacking	te unstable	or
еаш		transient)									
str	Existing Condition		9	8	7	6	5	4	3	2	1
		10	9	8	7				-		1
ete ii	Proposed Condition					6	5	4	3	2	
ot complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²)		4.0 - 5.0	0	7	3.0 - 4.0	or 5.0 - 7.0	·	<	3.0 or >7.	
Oo not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition	10	9	8	7 7	3.0 - 4.0 6	or 5.0 - 7.0	4	3	3.0 or >7.	1
y (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing	10	9	8		3.0 - 4.0 6 6	or 5.0 - 7.0 5 5	·	3 3	2 2	1
rsity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²)	10 10	9 9 5.0 - 7.0	8	7	3.0 - 4.0 6 6 6 3.5 - 5.0 6	5 5 0r 7.0 - 8.0	4 4	3 3	2 2 2 <3.5 or >8.0	1 1
Diversity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing	10 10 10	9			3.0 - 4.0 6 6	or 5.0 - 7.0 5 5	4	3 3	2 2	1 1 0
lform Diversity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability	10 10 10	9 9 5.0 - 7.0	8	7	3.0 - 4.0 6 6 3.5 - 5.0 6 6	5 5 5 or 7.0 - 8.0	4 4	3 3	2 2 2 <3.5 or >8.0 2	1 1 0
Bedform Diversity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition	10 10 10 10 10	9 9 5.0 - 7.0 9	8	7	3.0 - 4.0 6 6 3.5 - 5.0 6 6	5 5 5 0r 7.0 - 8.0 5	4 4	3 3	2 2 2 <3.5 or >8.0 2 2	1 1 1
Bedform Diversity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 9	8 8 8	7 7 7 7	3.0 - 4.0 6 6 6 3.5 - 5.0 6 6 6 1.2 6 6	5 5 5 0r 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4 4	3 3 3 3 3 3 3	2 2 2 2 3.5 or >8.6 2 2 2 4 1.2 2 4 1.1	1 1 0 1 1
Bedform Diversity (Do not complete if	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition	10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 >1.2	8 8 8 8	7 7 7 7 7	3.0 - 4.0 ¢ 6 6 3.5 - 5.0 ¢ 6 6 1.2 6 1.1	5 5 5 0r 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4 4 4	3 3 3 3 3 3 3 3	2 2 2 3.5 or >8.6 2 2 2 41.2 2 41.1 2	1 1 0 1 1 1
Bedform Diversity (Do not complete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 9 >1.2	8 8 8 8 8	7 7 7 7 7 7	3.0 - 4.0 d 6 6 3.5 - 5.0 d 6 6 1.2 6 1.1 6 6	5 5 5 0r 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4 4	3 3 3 3 3 3 3	2 2 2 2 3.5 or >8.6 2 2 2 4 1.2 2 4 1.1	1 1 0 1 1
Bedform Diversity (Do not complete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition	10 10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 9 >1.2	8 8 8 8 8	7 7 7 7 7 7	3.0 - 4.0 d 6 6 3.5 - 5.0 d 6 6 1.2 6 6 1.1 6 6 Streams in C	5 5 5 7 7.0 - 8.0 5 5 - 1.5 5 - 1.2	4 4 4 4 4	3 3 3 3 3 3 3 3	2 2 2 3.5 or >8.6 2 2 2 41.2 2 41.1 2	1 1 0 1 1 1
Bedform Diversity (Do not complete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition	10 10 10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 >1.2 9 Moderat 2.0 - 4.0	8 8 8 8 8 8 8	7 7 7 7 7 ent Perennial 7 7	3.0 - 4.0 6 6 6 3.5 - 5.0 6 6 1.2 6 6 1.1 6 6 Streams in C 4.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4	3 3 3 3 3 3 3	2 2 2 3.5 or >8.6 2 2 41.2 2 41.1 2 2 2 46.0 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bedform Diversity (Do not complete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition 12. Pool Max Depth Ratio/Depth Variability	10 10 10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 >1.2 9 Moderat 2.0 - 4.0	8 8 8 8 8 8 8 8	7 7 7 7 7 7 ent Perennial	3.0 - 4.0 6 6 6 3.5 - 5.0 6 6 1.2 6 6 1.1 6 6 5 Streams in C 4.0 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4	3 3 3 3 3 3 3 3 3	2 2 2 43.5 or >8.6 2 2 4 1.1 2 2 2 4 1.1 2 2 2 4 5 6.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bedform Diversity (Do not complete if Bedform Diversity (Do not complete if stream is ephemeral)	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²) Existing Condition Proposed Condition 11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi²) Existing Condition Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition	10 10 10 10 10 10 10 10 10	9 9 5.0 - 7.0 9 9 >1.5 9 >1.2 9 Moderat 2.0 - 4.0 9 9	8 8 8 8 8 8 8	7 7 7 7 7 ent Perennial 7 7	3.0 - 4.0 6 6 6 3.5 - 5.0 6 6 1.2 6 6 1.1 6 6 5 Streams in C 4.0 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4	3 3 3 3 3 3 3	2 2 2 2 3.5 or >8.6 2 2 2 41.1 2 2 2 41.1 2 2 2 46.0 2 2 2	1 1 0 1 1 1

each ID:	Trib 3 Reach Score/Reach Total Ex. 24/170 Prop.: 136/170 Quality: Ex: 0.14 Prop:0.8											
		Func	tion-base	d Rapid	Reach Lev	el Stream Ass	essment					
Assessment	M					Categ	ory					
Parameter	Measurement Method	Fu	unctionin	9		Functioning	-at-Risk		N	ot Functio	ning	
		Str	eam Fund	ction Py	ramid Leve	l 4 Physicoche	mical					
	13. Water Appearance and Nutrient Enrichment (USDA 1999)	colored; depth 3 to colored); surface; n submerge Clear water reach; div communit quantities	r, or clear b bbjects visib o 6 ft (less if no oil sheer io noticeable del objects on er along en verse aquati y includes l o of many sp tes; little algesent	le at slightly n on e film on r rocks. tire c plant ow ecies of	visible to dep	udiness especially oth 0.5 to 3.0 ft; m on water surfac er along entire rea on stream si	ay have slight e. Fairly clear ich; moderate	green color; or slightly	appear time; ol depth< water n other o pollutal mats, s sheen of sewage pollutal Pea-gruwater a dense: macrop stream	rbid or mudd ance most of opjects visible 0.5 ft; slow r naybe bright bvious water nts; floating a urface scum or heavy coa n surface; or chemicals, ca, or other nts. eeen, gray, or dlong entire r stands of obytes cloggi is severe alga	f the at moving green; algal , at of strong bil, brown each; ng	
Z	Existing Condition Proposed Condition				7	6	5 5	4	3	2	1	
iter Quality a	14. Detritus (Petersen, 1992)	and woo	9 onsisting of d without se covering it	ediment	oris without	Fine organic sediment black in color and foul odor (anaerobic) or detritus absent						
Wa	Existing Condition	10	9	8	7	6	5	4	3	2	1	
	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
	eam Function Pyramid							AR NF		Score:4		
Stre	eam Function Pyramid	Level 4 F						AR NF		Score:16		
,,	15. Macroinvertebrate	ı	Abundant	Function	on Pyramid	Level 5 Biology Rare			T	Not present		
E .	Existing Condition	10	9	8	7	6	5	4	3	2	1	
trea	Proposed Condition		9	8	7	6	5	4	3	2	1	
Biology (Do not complete if stream is ephemeral)	16. Macroinvertebrate Tolerance		t intolerant			Limited intolera				tolerant spe	ecies	
3iol mpla	Existing Condition	10	9	8	7	6	5	4	3	2	1	
e G	Proposed Condition	10	9	8	7	6	5	4	3	2	1	
not	17. Fish Presence Existing Condition	10	Abundant 9	8	7	Rare 6	5	4	3	Not present 2	1	
(Do	Proposed Condition		9	8	7	6	5	4	4	2	1	
	Proposed Condition 10 9 8 7 6 5 4 4 2 1 If existing biology is FAR or NF, provide description of cause(s) Stream is currently piped.											
St	ream Function Pyramic	d Level 5	Biology	Overall	EXISTING C	ondition F	FAR N	F	S	core: 3		
	ream Function Pyramic						FAR N			ore:24		

Reach ID:	Trib 3	1	Reach Score/Reach Total	Ex. 24/170 Prop.: 136/170	Quality: Ex: 0.14 Prop:0.8
		Function-based Rapi	id Reach Level Stream A	•	
Assessment			Cat	egory	
Parameter	Measurement Method	Functioning	Function	ing-at-Risk	Not Functioning
		Bankfull Determination	n and Rosgen Stream Cl	assification	
Rosgen Stream T	ype (Observation) EX - Stre	am is currently piped PRO - 0	C		
Regional Curve (circle one): Piedmon	t Coastal Plain	Allegheny Plateau/Ridge	and Valley Urban	Karst
DA (sqmi)	0.13				
BF Width (ft)	5.2-6.6			BF Area (sqft)	2.3-3.9
BF Depth (ft)	0.45-0.58			Percent Impervious (%)	21.3
		Fie	ld Measurements		
F	Parameter		Measureme	nts and Ratios	
Water surface to elevation differen	geomorphic feature ce	Ex- Channel is piped Upstream Reference: 0.57			
Riffle Mean Depth	n at Bankfull Stage (dbkf)	Ex- Channel is piped Upstream Reference: 0.5	Proposed: 0.36 & 0.48		
Riffle Width at Ba	nkfull Stage (Wbkf)	Ex- Channel is piped Upstream Reference: 5.52	Proposed: 4.6 & 6.2		
Riffle XS Area at (Abkf = dbkf*Wb		Ex- Channel is piped Upstream Reference: 2.8	Proposed: 1.65 & 2.97		
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Ex- Channel is piped Upstream Reference: 5.9	Target: 18.4 & 24.8		
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Ex- Channel is piped Upstream Reference: 1.1	Target 4.0		
₋ow Bank Height	t (LBH)	Ex- Channel is piped Upstream Reference: 2.7	Proposed: 0.5 & 0.66		
Riffle Maximum D (Dmax)	epth at Bankfull Stage	Ex- Channel is piped Upstream Reference: 0.7	Proposed: 0.5 & 0.66		
Bank Height Rat BHR=LBH/Dma		Ex- Channel is piped Upstream Reference: 3.9	Proposed: 1.0		
BEHI/NBS Rating	s and Lengths	Ex- Channel is piped	L/L		
Pool to Pool Spac	cing (P-P)	Ex- Channel is piped	Proposed: Min: 20, Max: 40, Avg.: 30		
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- kf)	Ex- Channel is piped	Proposed: Min:4.3, Max:8.3, Avg.:5.4		
Pool Maximum De Dmbkfp)	epth at Bankfull Stage	Ex- Channel is piped	Proposed: 0.9 & 1.2		
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp bkf)	Ex- Channel is piped	Proposed: 2.5		
Macroinvertebrate	e Taxa Observed	Ex- Channel is piped	n/a		

				SESSI	MENT FIE	LD DATA			ASED		
atershed:	Middle Potomac - Catoctin				Rater(s):		RC/BW				
eam:	Un -Named Tributary to Cabin	Branch			Date:		3/10/2022				
ch Length:	1033 linear feet				Latitude:		39.177353				
oto(s):	See Attached				Longitude:		-77.199137				
ach ID:	Trib 4					Posch Total		Prop.: 136/170	Quality	y: Ex: 0.39 F	Pron:0 8
ICITID.	1110-4	Function	on-base	ed Rapic	Reach Lev			-	Quant	y. Ex. 0.00 i	тор.о.
							egory				
ssessment Parameter	Measurement Method	Fun	ctionin	g			ing-at-Ris	k	N	ot Function	oning
			St	ream Fu	ınction Pyra	mid Level 1	Hydrology	/			
	Concentrated Flow		I for cond airments ent land u	from		te, however, me		pairments to re- in place to pro	ect flow/im	ial for conce pairments t ration site a nents are in	o reach and no
	Existing Condition	10	9	8	7	6	5	4	3	2	1
±	Proposed Condition	10	9	8	7	6	5	4	3	2	1
Runoff	2. Flashiness	Non-flashy result of r geolog impervious	ainfall pa	atterns, oils,		flow regime as y, and soils, im		rainfall pattern: ver 7 - 15%	result geo	y flow regim of rainfall pa blogy, and s rious cover than 15%	atterns, oils,
	Existing Condition	10	9	8	7	6	5	4	3	2	1
	Proposed Condition	10	9	8	7	6	5	4	3	2	1
	1 Toposea Condition	10									
	Stream Function Pyram		-			NG Conditio	n F	FAR NF	Sco	ore:9	
:	·	nid Level 1	Hydro	logy Ov	erall EXISTII			FAR NF		ore:9 re:11	
	Stream Function Pyram	nid Level 1	Hydro Hydrol	logy Ov	erall EXISTII	SED Condit	ion F F	FAR NF			
:	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR)	nid Level 1	Hydrol Str <1.20	logy Ove ogy Ove ream Fu	erall EXISTII erall PROPO inction Pyral	SED Condition mid Level 2	ion F F Hydraulics	FAR NF	Sco	re:11 >1.50	
:	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition	id Level 1 id Level 1	Hydrol Str <1.20	logy Overgeam Fu	erall EXISTII erall PROPO inction Pyral	SED Condition of the second se	ion F F Hydraulics - 1.50	FAR NF	Sco	re:11 >1.50	
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA	nid Level 1	Hydrol Str <1.20	logy Ove ogy Ove ream Fu	erall EXISTII erall PROPO inction Pyral	1.21 6 6	ion F F Hydraulics	FAR NF	Sco	re:11 >1.50	1 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams)	id Level 1 id Level 1	Hydrol Str <1.20 9	logy Overgeam Fu	erall EXISTII erall PROPO inction Pyral	1.21 6 6	Hydraulics - 1.50	FAR NF	Sco	>1.50 2 2	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA	id Level 1 10 10	Hydrol	logy Oveream Fu	erall EXISTII erall PROPO inction Pyral 7 7	1.21 6 6 6	ion F F Hydraulics - 1.50 5 5 - 1.4	FAR NF	3 3	>1.50 2 2 <1.4	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition	id Level 1 10 10	Hydrol	logy Ovo	erall EXISTII erall PROPO inction Pyral 7 7 7	\$ED Condit mid Level 2 1.21 6 6 2.1 6 6	ion F F Hydraulics - 1.50 5 5 - 1.4	FAR NF s 4 4	3 3 3	>1.50 2 2 <1.4	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial	id Level 1 10 10	Hydrol Str <1.20 9 9 >2.2	logy Ovo	erall EXISTII erall PROPO inction Pyral 7 7 7	\$ED Condit mid Level 2 1.21 6 6 2.1 6 6	5 - 1.4 5 5 5	FAR NF s 4 4	3 3 3	>1.50 2 2 <1.4 2 2	1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition Proposed Condition db. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	10 10 10	Hydrol	logy Oveream Further 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	erall EXISTII erall PROPO inction Pyral 7 7 7	1.21 6 6 6 2.1 6 1.3	5 - 1.4 5 - 1.1	FAR NF s 4 4 4 4	3 3 3	>1.50 2 2 <1.4 2 <1.1	1 1 1
Floodplain Connectivity (Vertical Stability)	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition	10 10 10 10 10 10 10 10 10 10 ro concrunoff is pri hillslopes (200 ft from or wetland a debris debris debris described in the concrusion of the concrusion o	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 9 centrated marily sh <10%; h n stream;	8 8 8 8 flow; neet flow; illslopes ponding d litter or well	erall EXISTII erall PROPO Inction Pyral 7 7 7 7 7 runoff is equa and rill erosis 50 - 200 ft froi	1.21 6 6 6 1.3 6 6 ally sheet and con occurring); I	### State	FAR NF s 4 4 4 4 0 d flow (minor gg) 0 - 40%; hillslop	Sco 3 3 3 3 3 3 corr prese and rill >40% tter from s wettanned bebris	>1.50 2 2 <1.4 2 <1.1 2	1 1 1 1 lows e gully illslopes <50 ft ding or I litter o
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition	10 10 10 10 10 10 10 10 10 10 ro concrunoff is pri hillslopes (200 ft from or wetland a debris debris debris described in the concrusion of the concrusion o	Hydrol Str <1.20 9 9 >2.2 9 >1.4 9 9 entrated marily sh< 10%; h h arigans are	8 8 8 8 flow; neet flow; illslopes ponding d litter or well	erall EXISTII erall PROPO Inction Pyral 7 7 7 7 7 runoff is equa and rill erosis 50 - 200 ft froi	SED Condition of the co	### State	FAR NF s 4 4 4 4 0 d flow (minor gg) 0 - 40%; hillslop	Sco 3 3 3 3 3 3 corr prese and rill >40% tter from s wettanned bebris	>1.50 2 2 <1.4 2 <1.1 2 centrated fint (extensiv) erosion); hi; hillslopes et dareas and e gams are negatives de gams are negatives	1 1 1 1 lows e gully illslopes <50 ft ding or I litter o
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 no concrunoff is pri hillslopes > 200 ft from or wetland a debris rep	Hydro Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 9 entrated marily sh <10%; h in stream; areas an- ijams are igresented	8 8 8 8 8 flow; eeet flow; eight flow; ponding d litter or well	runoff is equand rill erosis 50 - 200 ft from or de	SED Condition of the co	F Hydraulics -1.50 -1.4 -1.4 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1	FAR NF s 4 4 4 4 4 flow (minor gu - 40%; hillslop and areas and I presented	3 3 3 3 3 3 corprese and rill ses +40% from se wetlandebris repre	>1.50 2 2 <1.4 2 <1.1 2 contrated fint (extensive erosion); his; hillslopes stream; pone da areas and as jams are n essented or a	1 1 1 lows e gully illslope <50 ft ding or I litter o oot well absent
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 no concrunoff is pri hillslopes - 200 ft from or wetland a debris rep	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily she 10%; hin areas anipars are resented 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	runoff is equand rill erosis 50 - 200 ft fro	SED Condition In the co	Hydraulics - 1.50 - 1.4 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 3 3 cor prese and rill >40% from s wetland debris repre	>1.50 2 2 <1.4 2 <1.1 2 centrated fint (extensive erosion); hi; hillslopes stream; pond d areas and jams are nesented or a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage Existing Condition Existing Condition Froposed Condition Existing Condition Proposed Condition Proposed Condition Proposed Condition	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Hydro Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 9 entrated marily she 10%; hin stream; areas an james are green tectors are green tectors are green tectors green	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	erall EXISTII erall PROPO Inction Pyral 7 7 7 7 runoff is equa and rill erosis 50 - 200 ft froi or de	SED Condition and Level 2 1.21 6 6 6 1.3 6 6 6 1.3 6 6 6 6 6 1.3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Hydraulics - 1.50 - 1.4 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 3 3 cor prese and rill >40% from s wetland debris repre	>1.50 2 2 <1.4 2 2 <1.1 2 2 concentrated flint (extensive erosion); his circam; pond a reas and signs are n sented or a sented	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Stream Function Pyram Stream Function Pyram 3. Bank Height Ratio (BHR) Existing Condition Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams) Existing Condition Proposed Condition Proposed Condition 4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams) Existing Condition Proposed Condition Proposed Condition 5. Floodplain Drainage Existing Condition Proposed Condition Proposed Condition	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Hydrol Str <1.20 9 9 >2.2 9 9 >1.4 9 entrated marily sh <10%; hn a stream; areas an ijams are resented 9 9 Stable	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	runoff is equand rill erosis 50 - 200 ft fro	SED Condition In the co	Hydraulics - 1.50 - 1.4 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1 - 5 - 5 - 5 - 1.1	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 3 3 cor prese and rill >40% from swettand debris repre	re:11 >1.50 2 2 <1.4 2 <1.1 2 2 int (extensive erosion); his; hillslopes stream; pond d areas and sigms are nesented or a 2 2 spread Inst	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		Func	tion-based	l Rapid	Reach Le	vel Stream Ass					
sessment arameter	Measurement Method	Fi	unctioning	ı		Cate Functionin	· · ·		N	ot Functio	oning
		St	ream Fund	ction P	vramid Leve	el 3 Geomorph	ology				
	7. Riparian Vegetation	<u> </u>			,a <u>_</u>	л с сссс.р	.		Ι		
Riparian Vegetation (Score = Average of Left and Right bank, max score of 10)	Zone (EPA, 1999, modified)	width o veget diversity activities	zone extend of >100 feet; ation communand density; do not impara species not or sparse	good inity human ct zone;	compositi activities	ne extends to a wi on is dominated b greatly impact zor presented and alt	y 2 or 3 speci ne; invasive sp	es; human ecies well	a width no ripa to h	an zone exte of <25 feet; rian vegetat uman activi ty of vegeta invasive	little o ion du ties;
R je je E je je	Left Bank Existing		9	8	7	6	5	4	3	2	1
Sco	Left Bank Proposed		9	8	7	6	5	4	3	2	1
⊕ E	Right Bank Existing Right Bank Proposed		9	8	7	6	5 5	4	3	2	1
Lateral Stability (Score =Average of Left and right bank, max score of 10)	8. Dominant Bank Erosion Rate Potential	Dominate po	e bank erosi itential is low or S Rating: L/\ L/H, L/VH, M	on rate	Dominat	e bank erosion ra or ating: M/L, M/M, N H/L, H/M, VH	te potential is	moderate	Domin rate BEHI/ H/Ex,	nate bank en potential is or NBS Rating VH/H, Ex/M H, VH/VH, E	rosion high : H/H, , Ex/H
Lateral Stability Average of Left Ik, max score of	Existing Condition (Right bank)		9	8	7	6	5	4	3	2	1
Lateral Stability e =Average of Left and bank, max score of 10)	Proposed Condition (Right Bank)	10	9	8	7	6	5	4	3	2	1
core =	Existing Condition (Left bank) Proposed Condition	10	9	8	7	6	5	4	3	2	1
S)	(Left Bank)		9	8	7	6	5	4	3	2	1
	9. Lateral Stability Extent		Stable			Localized I	nstability		Wide	spread Insta	ability
	Existing Condition Proposed Condition		9	8	7 7	6 6	5 5	4 4	3	2 2	1
te if stream is ephemeral)	1999)	fish cover submerge banks, rul and large stable hal allow full potential	colonization; mix of sna dologs, under oble, gravel, rocks, or othe oblet and at secolonization (i.e., logs/sna w fall and n	gs, ercut cobble her stage to ags that		presence of add ut not yet prepare at high end	ed for coloniza		than de	availability l sirables obv te unstable	vious;
stre	Existing Condition	,	9	8	7	6	5	4	3	2	1
ē.	Proposed Condition		9	8	7	6	5	4	3	2	1
complet	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²)		4.0 - 5.0			3.0 - 4.0 or	5.0 - 7.0		<	3.0 or >7.	0
o not	Existing Condition		9	8	7	6	5	4	3	2	1
ĕ	Proposed Condition 11b. Pool-to-Pool Spacing	10	9	8	7	6	5	4	3	2	1
	Ratio (Watersheds > 10 mi ²)		5.0 - 7.0			3.5 - 5.0 or	7.0 - 8.0			<3.5 or >8.0)
sity	Existing Condition		9	8	7	6	5	4	3	2	1
versity		10	9	8	7	1.2 -	1.5	4	3	<1.2	1
form Diversity	Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams)		>1.5								1
Bedform Diversity (Do not complet	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition		9	8	7	6	5	4	3	2	
Bedform Diversity	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability			8	7 7	6 6	5	4	3	2 2 <1.1	1
Bedform Diversity	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth		9			6	5			2	
Bedform Diversity	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10	9 9 >1.2 9 9	8 8 8	7 7 7	6 1.1 - 6 6	5 1.2 5 5	4	3	2 <1.1	1
	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition	10	9 9 >1.2 9 9	8 8 8	7 7 7	6 1.1 -	5 1.2 5 5	4	3	2 <1.1	1
	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition	10	9 9 >1.2 9 9	8 8 8	7 7 7	6 1.1 - 6 6	5 1.2 5 5 luvial Valleys	4	3	2 <1.1	1
	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition	10 10 10	9 9 >1.2 9 9 Modera 2.0 - 4.0	8 8 8 te Gradi	7 7 7 ent Perennia	6 1.1 - 6 6 1 Streams in Col 4.0 - 6	5 1.2 5 5 luvial Valleys 5.0 5	4 4 4	3 3 3	2 <1.1 2 2 >6.0 2	1 1 1
	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition	10 10 10	9 9 >1.2 9 9 Modera 2.0 - 4.0 9	8 8 8 te Gradi	7 7 7 ent Perennia	6 1.1 - 6 6 1 Streams in Col 4.0 - 6 6 6	5 1.2 5 5 luvial Valleys 6.0 5 5	4 4 4	3 3 3	2 <1.1 2 2 >6.0 2	1 1
	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition	10 10 10	9 9 >1.2 9 9 Modera 2.0 - 4.0	8 8 8 te Gradi	7 7 7 ent Perennia	6 1.1 - 6 6 1 Streams in Col 4.0 - 6	5 1.2 5 5 luvial Valleys 6.0 5 5	4 4 4	3 3 3	2 <1.1 2 2 >6.0 2	1 1
Bedform Diversity (Do not complete if Bedform Diversity stream is ephemeral)	12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams) Existing Condition Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams) Existing Condition Proposed Condition 11. Pool-to-Pool Spacing Ratio (3-5% Slope) Existing Condition Proposed Condition 12. Pool Max Depth	10 10 10 10	9 9 >1.2 9 9 Modera 2.0 - 4.0 9	8 8 8 te Gradi	7 7 7 ent Perennia	6 1.1 - 6 6 1 Streams in Col 4.0 - 6 6 6	5 1.2 5 5 luvial Valleys 6.0 5 5	4 4 4	3 3 3	2 <1.1 2 2 >6.0 2	1 1

each ID:	Trib 4 Reach Score/Reach Total Ex. 66/170 Prop.: 136/170 Quality: Ex: 0.39 Prop:0.8 Function-based Rapid Reach Level Stream Assessment												
		Func	tion-base	d Rapid	I Reach Lev	el Stream Ass	essment						
Assessment						Categ	ory		1				
Parameter	Measurement Method	F	unctioning	g		Functioning	-at-Risk		N	ot Functio	ning		
		Str	ream Fund	ction Py	ramid Leve	4 Physicoche	mical						
Water Quality and Nutrients (Do not complete if stream is ephemeral)	13. Water Appearance and Nutrient Enrichment (USDA 1999)	colored; of depth 3 to colored); surface; n submerge Clear wat reach; div communit quantities	r, or clear b bbjects visib o o ft (less if o o ft (less if o o ft (less if o no oil sheer to noticeable et objects o er along em verse aquati y includes l o f many sp res; little alg esent	le at slightly n on e film on r rocks. tire c plant ow pecies of	visible to dep	idiness especially th 0.5 to 3.0 ft; m; on water surfac er along entire rea on stream si	ay have slig e. Fairly cle ach; modera	ht green color; ar or slightly	appearatime; obtatement of the color of sewage pollutar Peagre water a dense s macrop stream;	rbid or muddance most of opects visible 0.5 ft; slow raybe bright below to the properties of the prope	f the at moving green; algal , at of strong bil, brown each; ng		
Ž	Existing Condition	10 10	9	8	7	6 6	5 5	4	3	2	1		
iter Quality a	Proposed Condition 14. Detritus (Petersen, 1992)	Mainly c	consisting of d without se covering it	ediment		d wood scarce; fin sedime	ent	ebris without	Fine of black odo	2 organic sedir in color and r (anaerobic etritus abser	d foul :) or		
Š	Existing Condition	10	9	8	7	6	5	4	3	2	1		
	Proposed Condition	10	9	8	7	6	5	4	3	2	1		
	ream Function Pyramid							FAR NF		Score:8			
Stre	eam Function Pyramid	Level 4 F						FAR NF		Score:16			
	15. Macroinvertebrate		Stream Abundant	Function	on Pyramid	Level 5 Biology				No. to a second			
. <u>w</u> E	Existing Condition	10	Abundani 9	8	7	Rare 6	5	4	3	Not present 2	1		
Tea	Proposed Condition	10	9	8	7	6	5	4	3	2	1		
Biology (Do not complete if stream is ephemeral)	16. Macroinvertebrate Tolerance	Abundan	nt intolerant	species		Limited intolera	int species		Only	tolerant spe	ecies		
Siol her her	Existing Condition	10	9	8	7	6	5	4	3	2	1		
E o	Proposed Condition	10	9	8	7	6	5	4	3	2	1		
not	17. Fish Presence	10	Abundant	0	7	Rare 6	5	4		Not present	1		
<u>ê</u>	Existing Condition Proposed Condition	10	9	8	7	6	5	4	3	2	1 1		
	Proposed Condition 10 9 8 7 6 5 4 3 2 1 If existing biology is FAR or NF, provide description of cause(s)												
			D'alai d	N	EVICTING				•				
St	ream Function Pyramid	Level 5	Riology	Jveraii i	ヒメルシリかい	ondition F	FAR N	lF.	Sc	ore: 12			

Reach ID:	Trib 4]	Reach Score/Reach Total		Quality: Ex: 0.39 Prop:0.8						
		Function-based Rapi	d Reach Level Stream A								
Assessment	Measurement Method	Functioning		egory	Not Franctioning						
Parameter		Functioning		ing-at-Risk	Not Functioning						
		Bankfull Determinatio	n and Rosgen Stream Cl	assification							
Rosgen Stream T	ype (Observation): EX - C/F	PRO - C									
Regional Curve (t Coastal Plain	Allegheny Plateau/Ridge	e and Valley Urban	Karst						
DA (sqmi)	0.13			DE 4 (6)	0.4.4.0						
BF Width (ft) BF Depth (ft)	5.3-6.7 0.46-0.59			BF Area (sqft) Percent Impervious (%)	2.4-4.0						
Di Dopui (ii)	0.10 0.00			ir ereent impervious (70)							
		Fie	ld Measurements								
Parameter Measurements and Ratios											
Water surface to elevation differen	geomorphic feature ce	Existing Min:0.39, Max: 0.55, Avg.: 0.48									
Riffle Mean Depth	n at Bankfull Stage (dbkf)	Existing Min:0.44, Max: 0.55, Avg.: 0.48	Proposed: 0.31, 0.47 & 0.39								
Riffle Width at Ba	nkfull Stage (Wbkf)	Existing Min:2.93, Max: 4.59, Avg.: 3.82	3.8, 5.0 & 6.0								
Riffle XS Area at (Abkf = dbkf*Wb	•	Existing Min:1.53, Max: 2.18, Avg.: 1.83	Proposed: 1.18, 1.95 & 2.82								
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Existing Min:4.44, Max: 7.80, Avg.: 5.56	Target: 8.4, 20 & 24								
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Existing Min:1.10, Max: 1.84, Avg.: 1.47	Target 2.2 / 4.0								
Low Bank Height	t (LBH)	Existing Min:1.0, Max: 1.95, Avg.: 1.29	Proposed: 0.42, 0.5 & 0.6								
Riffle Maximum D (Dmax)	epth at Bankfull Stage	Existing Min:0.56, Max: 0.72, Avg.: 0.63	Proposed: 0.42, 0.5 & 0.6								
Bank Height Rat (BHR=LBH/Dmax		Existing Min:1.38, Max:2.86, Avg.: 1.98	Proposed: 1.0								
BEHI/NBS Rating	s and Lengths	H/M, H/L, M/M, M/L, L/L	L/L								
Pool to Pool Spac	cing (P-P)	Existing Avg.: 39.4	Proposed: Min: 12, Max: 49, Avg.: 25								
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- kf)	Existing Avg.: 10.32	Proposed: Min:2.3, Max:5.1, Avg.:5.0								
Pool Maximum De (Dmbkfp)	epth at Bankfull Stage	Existing Avg.: 1.29	Proposed: 0.8, 1.0 & 1.2								
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp bkf)	Existing Avg.: 2.7	Proposed: 2.5								
Macroinvertebrate	e Taxa Observed	n/a	n/a								

eam:	Middle Potomac - Catoctin									
ach Length:	11 N 179 1 1 5 11			Rater(s):		RC/BW				
-	Un -Named Tributary to Cabin	Branch		Date:		3/10/2022				
to(s):	554 linear feet			Latitude:		39.177353				
	See Attached			Longitude:		-77.199137				
ach ID:	Trib 5			Reach Score	Reach Total	Ex. 24/170	Prop.: 136/170	Quality:	Ex: 0.14 P	rop:0.8
		Function	n-based Rapid	d Reach Lev	el Stream A	ssessmer	nt			
accoment					Cat	tegory				
ssessment Parameter	Measurement Method	Func	tioning		Function	ing-at-Ris	k	No	t Functio	ning
			Stream Fu	ınction Pyra	mid Level 1	Hydrolog	у			
	1. Concentrated Flow	flow/impa	or concentrated irments from it land use		e, however, m		pairments to reach in place to protect	flow/imp restora	I for concer airments to ation site ar ents are in	reach
	Existing Condition	10	9 8	7	6	5	4	3	2	1
#	Proposed Condition	10	9 8	7	6	5	4	3	2	1
Runoff	2. Flashiness	result of rai geology impervious o	ow regime as a infall patterns, , and soils, cover less than 6%		flow regime a , and soils, im		rainfall patterns, ver 7 - 15%	result of geole impervio	flow regime f rainfall pa ogy, and so ous cover o than 15%	itterns, oils,
	Existing Condition	10	9 8	7	6	5	4	3	2	1
Į	Proposed Condition	10	9 8	7	6	5	4	3	2	1
;	Stream Function Pyram	nid Level 1 I	Hydrology Ov	erall EXISTI	NG Conditio	n F	FAR NF	Sco	re:5	
5	Stream Function Pyram	id Level 1 F	lydrology Ove	erall PROPO	SED Condit	ion F	FAR NF	Scor	e:11	
			Stream Fu	ınction Pyra	nid Level 2	Hydraulic	s			
	3. Bank Height Ratio (BHR)	<	1.20			- 1.50			>1.50	
	Existing Condition	10	9 8	7	6	5	4	3	2	1
tability)	Proposed Condition 4a. Entrenchment (Meandering streams in alluvial valleys or Rosgen C, E, DA Streams)	10	2.2	,		- 1.4	4	3	<1.4	1
S	Existing Condition	10	9 8	7	6	5	4	3	2	1
Ţ.	Proposed Condition	10	9 8	7	6	5	4	3	2	1
rity (Ver	4b. Entrenchment (Non meandering streams in colluvial valleys or Rosgen B Streams)	>	1.4		1.3	3 - 1.1			<1.1	
cţi	Existing Condition	10	9 8	7	6	5	4	3	2	1
ıne	Proposed Condition	10	9 8	7	6	5	4	3	2	1
Floodplain Connectivity (Vertical Stability)	5. Floodplain Drainage	runoff is prim hillslopes < >200 ft from s or wetland ar debris ja	ntrated flow; arily sheet flow; 10%; hillslopes stream; ponding eas and litter or ms are well esented	and rill erosi 50 - 200 ft fro	on occurring);	hillslopes 10 ding or wetla	d flow (minor gully) - 40%; hillslopes and areas and litter presented	present and rill e >40%; from str wetland debris	entrated flot t (extensive trosion); hil hillslopes ream; pond areas and jams are no ented or al	e gully Islope <50 ft ling or litter o
	Existing Condition	10	9 8	7	6	5	4	3	2	1
	Proposed Condition	10	9 8	7	6	5	4	3	2	1
	6. Vertical Stability Extent		able	_		d Instability			pread Insta	
	Existing Condition		9 8	7	6	5	4	3	2	1
	Proposed Condition	10	9 8	7	6	5	4	3	2	1

		Funct	ion-base	d Rapid	Reach Le	vel Stream Ass					
sessment arameter	Measurement Method	Fu	ınctionin	g		Cate Functionin			N	ot Function	oning
		Str	eam Fun	ction P	vramid Lev	el 3 Geomorph	nology				
Riparian Vegetation (Score = Average of Left and Right bank, max score of 10)	7. Riparian Vegetation Zone (EPA, 1999, modified)	Riparian width or vegeta diversity a activities of invasive s	zone exter f >100 feet; ation comm and density do not impa species not or sparse	nds to a good unity human act zone;	Riparian zo composit activities	ne extends to a w ion is dominated l greatly impact zo presented and all	ridth of 25-100 by 2 or 3 speci ne; invasive s	ies; human pecies well	a width no ripa to h	an zone ext of <25 feet rian vegeta uman activi ity of vegeta invasive	; little o tion du ities;
parii = A ank											
ag s t t b d	Left Bank Existing Left Bank Proposed		9	8	7	6	5 5	4	3	2	1 1
Sc. Rig	Right Bank Existing		9	8	7	6	5	4	3	2	1
	Right Bank Proposed		9	8	7	6	5	4	3	2	1
Lateral Stability (Score =Average of Left and right bank, max score of 10)	8. Dominant Bank Erosion Rate Potential	po BEHI/NBS	e bank eros tential is lov or S Rating: L/ JH, L/VH, M	w /VL, L/L,		te bank erosion ra or tating: M/L, M/M, H/L, H/M, VH	M/H, L/Ex, H/L		BEHI/H/Ex,	nate bank e potential is or 'NBS Ratino VH/H, Ex/M H, VH/VH, I	high g: H/H, l, Ex/H
Lateral Stability Average of Left ik, max score of	Existing Condition (Right bank)	10	9	8	7	6	5	4	3	2	1
Later =Avera nk, ma	Proposed Condition (Right Bank) Existing Condition	10	9	8	7	6	5	4	3	2	1
Score : ba	(Left bank) Proposed Condition	10	9	8	7	6	5	4	3	2	1
2	(Left Bank)		9	8	7	6	5	4	3	2	1
	9. Lateral Stability Extent		Stable			Localized I				spread Inst	
	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1 1
te if stream is ephemeral)		submerge banks, rub and large stable hab allow full o potential (are not ne	mix of snad logs, und bble, gravel rocks, or of bitat and at colonization i.e., logs/srw fall and r	ercut , cobble ther stage to n ags that	oi new iaii, D	ut not yet prepar at high end		audii (iiidy fale		sirables ob te unstable	
ф	Eviatina Canditian	transient)	9		7	6	-	4	2	2	
E	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	<u>1</u> 1
complete	11a. Pool-to-Pool Spacing Ratio (Watersheds < 10 mi²)		4.0 - 5.0			3.0 - 4.0 or				< 3.0 or >7.	.0
not	Existing Condition		9	8	7	6	5	4	3	2	1
ê	Proposed Condition	10	9	8	7	6	5	4	3	2	1
it Y	11b. Pool-to-Pool Spacing Ratio (Watersheds > 10 mi ²)		5.0 - 7.0			3.5 - 5.0 or	7.0 - 8.0			<3.5 or >8.	0
Vers	Existing Condition		9	8	7	6	5	4	3	2	1
Bedform Diversity (Do not complet	Proposed Condition 12a. Pool Max Depth Ratio/Depth Variability (Gravel Bed Streams)	10	9 >1.5	8	7	1.2 -	1.5	4	3	<1.2	1
Be	Existing Condition		9	8	7	6	5	4	3	2	1
	Proposed Condition 12b. Pool Max Depth Ratio/Depth Variability (Sand Bed Streams)	10	>1.2	8	7	6 1.1 -	1.2	4	3	<1.1	1
	Existing Condition		9	8	7	6	5	4	3	2	1
	Proposed Condition	10	9 Modera	8 ato Gradi	7 ent Perennia	6 I Streams in Co	5 Iluvial Valleys	4	3	2	1
e if	11. Pool-to-Pool Spacing			ate Gradi	ent Perennia		•				
plet eme	Ratio (3-5% Slope)		2.0 - 4.0			4.0 -				>6.0	
	Existing Condition Proposed Condition		9	8	7	6	5 5	4	3	2	1
툍뻍	12. Pool Max Depth	10		U	,	1.2 -	-	7	5		
ot com is eph		ĺ	>1.5							<1.2	
edrorm DIV o not com am is eph	Ratio/Depth Variability	- 10	_	_							
bedrorm Diversity (Do not complete if stream is ephemeral)	Ratio/Depth Variability Existing Condition Proposed Condition		9	8	7	6	5	4	3	2 2	1 1

each ID:	Trib 5 Reach Score/Reach Total Ex. 24/170 Prop.: 136/170 Quality: Ex: 0.14 Prop:0.8												
		Funct	ion-base	d Rapid	I Reach Lev	el Stream Ass	essment						
Assessment	Management Matherd					Categ	ory						
Parameter	Measurement Method	Fu	ınctioning	3		Functioning	g-at-Risk		N	ot Functio	ning		
		Str	eam Fund	tion Py	ramid Leve	4 Physicoche	mical						
Water Quality and Nutrients (Do not complete if stream is ephemeral)	13. Water Appearance and Nutrient Enrichment (USDA 1999)	colored; o depth 3 to colored); I surface; n submerge Clear wate reach; div communities	, or clear bibjects visiblbjects visiblbjects visiblbjects visiblb 6 ft (less if no oil sheer o noticeabld d objects or er along ent er along ent erse aquatify includes to of many spetes; little algesent	e at slightly on e film on rocks. ire c plant ow ecies of	visible to der no oil shet greenish wat	idiness especially th 0.5 to 3.0 ft; m en on water surfac er along entire re on stream s	ay have sligl pe. Fairly cle: ach; modera ubstrate	ht green color; ar or slightly te algal growth	appearatime; obtated the control of	een, gray, or long entire restands of hytes clogging severe alga creating thic	f the at moving green; algal , t of strong bil, brown each; ng		
Z D	Existing Condition Proposed Condition	10 10	9	8	7	6	5 5	4	3	2	1		
Nater Quality a	14. Detritus (Petersen, 1992) Existing Condition	and woo	onsisting of d without se covering it		Leaves and	d wood scarce; fir sedim		ebris without	3 2 1 Fine organic sediment - black in color and foul odor (anaerobic) or detritus absent 3 2 1				
>	Proposed Condition	10	9	8	7	6	5	4	3	2	1		
Str	eam Function Pyramid	Level 4	Physicocl	nemica	Overall EX	STING Condit	ion F	FAR NF	;	Score:4			
Stre	eam Function Pyramid	Level 4 P	hysicoch	emical	Overall PRO	POSED Cond	ition F	FAR NF	5	Score:16			
			Stream	Function	on Pyramid	Level 5 Biolog	у						
s S	15. Macroinvertebrate		Abundant			Rare				Not present			
еап	Existing Condition Proposed Condition	10 10	9	8	7	6	5	4	3	2	1 1		
Biology (Do not complete if stream is ephemeral)	16. Macroinvertebrate Tolerance		t intolerant		1	Limited intoler		4		tolerant spe			
iolc nple	Existing Condition	10	9	8	7	6	5	4	3	2	1		
6 CO 10	Proposed Condition	10	9	8	7	6	5	4	3	2	1		
not	17. Fish Presence Existing Condition	10	Abundant 9	8	7	Rare 6	5	4	3	Not present			
°C)	•	10	9	8	7	6	5 5	4	4	2	<u>1</u> 1		
	Proposed Condition 10 9 8 7 6 5 4 4 2 1 If existing biology is FAR or NF, provide description of cause(s) Stream is currently a concrete channel.												
St	ream Function Pyramic	d Level 5	Biology (Overall	EXISTING C	ondition F	FAR I	NF	Se	core: 3			
O.					PROPOSED			<u>"</u> IF	<u> </u>				

Reach ID:	Trib 5	1	Reach Score/Reach Total	Ev. 24/470 Prem : 426/470	Quality: Ex: 0.14 Prop:0.8							
React ID.	THE S	Function-based Rapid	d Reach Level Stream A	·	quality. Ex. 0.141 Top.0.0							
Assessment			Cat	egory								
Parameter	Measurement Method	Functioning	Function	ing-at-Risk	Not Functioning							
		Bankfull Determination	n and Rosgen Stream Cla	assification								
Rosgen Stream T	ype (Observation) EX - Stre	am is currently concrete chanr	nel PRO - C									
Regional Curve (*	t Coastal Plain	Allegheny Plateau/Ridge	and Valley Urban	Karst							
DA (sqmi)	0.06			DE A (#)	4 2 2 2							
BF Width (ft) BF Depth (ft)	3.6-4.9 0.35-0.45			BF Area (sqft) Percent Impervious (%)	1.3-2.2							
ы вери (и)	0.00-0.40		Percent Impervious (%) 21.3									
		Fiel	d Measurements									
I	Parameter		Measureme	nts and Ratios								
Water surface to elevation differen	geomorphic feature ce	Ex- Channel is in concrete channel										
Riffle Mean Deptl	h at Bankfull Stage (dbkf)	Ex- Channel is in concrete channel	Proposed: 0.36									
Riffle Width at Ba	ankfull Stage (Wbkf)	Ex- Channel is in concrete channel	Proposed: 4.6									
Riffle XS Area at (Abkf = dbkf*Wb		Ex- Channel is in concrete channel	Proposed: 1.65									
	Width (Wfpa) (Wfpa=Width mined by 2xDmax)	Ex- Channel is in concrete channel	Target: 18.4									
Entrenchment R	atio (ER) (ER=Wfpa/Wbkf)	Ex- Channel is in concrete channel	Target 4.0									
Low Bank Height	t (LBH)	Ex- Channel is in concrete channel	Proposed: 0.5									
Riffle Maximum D (Dmax)	Depth at Bankfull Stage	Ex- Channel is in concrete channel	Proposed: 0.5									
Bank Height Rat (BHR=LBH/Dma		Ex- Channel is in concrete channel	Proposed: 1.0									
BEHI/NBS Rating	gs and Lengths	Ex- Channel is in concrete channel	L/L									
Pool to Pool Space	cing (P-P)	Ex- Channel is in concrete channel	Proposed: Min: 21, Max: 30, Avg.: 26									
Pool to Pool Spa P Ratio=P-P/Wbl	acing Ratio (P-P Ratio) (P- kf)	Ex- Channel is in concrete channel	Proposed: Min:4.6, Max:6.5, Avg.:5.7									
Pool Maximum Do (Dmbkfp)	epth at Bankfull Stage	Ex- Channel is in concrete channel	Proposed: 0.9									
Pool Depth Ratio Ratio=Dmbkfp/d	o (Dmbkfp Ratio) (Dmbkfp bkf)	Ex- Channel is in concrete channel	Proposed: 2.5									
Macroinvertebrate	e Taxa Observed	Ex- Channel is in concrete channel	n/a									

Cabin Branch

Cabin Branch

Tributary 1, 2, and 3 (general riparian conditions)

Tributary 4

Tributary 5

Appendix D: Maryland Stream Mitigation Framework (MSMF) Stream Mitigation Calculator

							<u>ST</u>	REAM M	ITIGAT	ION CA	ALCULA	TOR				
Corps Proje					Corps PM:							T . 16				5502
Project Nan Lat/Long:	ne:		bin Branch D' 43", W 77D 12' 08		Date: Sponsor:		MDOT SHA			3/10/2022		Total	Stream Gains (F	nctional Fee	et)	<i>55</i> 83
County:		Montgom			Collaborators:		HGS, LLC//									
			Raw Ch	ange in Re	ach Value (Fu	nctional F	eet)					Stream Mi	tigation Adjustments		Stream Gains	
Reach Name	Physiographic Region	Evaluation	<u>Activity</u>	Resource Type	Length (Feet)	Stream Quality	<u>Channel</u> <u>Ihread</u>	Drainage Area (sqmi)	<u>Value</u> (Functional Feet)	Raw Change in Value (Functional Feet)	Site Sensitivity	Site Protection	<u>Buffer Adj</u>		(Functional Feet)	REMARKS
	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Wadeable	4670		Primary	4.33	2895		1	Easement	Evaluation Buffer (Acre) Buffer Quality		
Cabin Branch						35%	1	1.77		3653	0.1	0.03	Existing Buffer 6.0	63%	4236	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Wadeable	4680	79%	Primary	4.33 1.77	6548		<u>374</u>	123	Proposed Buffer 6.0	94%	b	
	Di I	F 1 4	Preliminary Resource		0	79%	Primary	0.15	_		1	Easement	Evaluation Buffer (Acr	rea Buffor Quality		
Tributary 1	Piedmont	Existing	Evaluation	Intermittent	0	14%		0.13	0	190	0.1	0.03	Existing Buffer 0.5	60%	225	
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	497.5	80%	Primary 1	0.15	190		20	Z	Proposed Buffer 0.5 Functional Feet	94%	6	
	Piedmont	Existing	Preliminary Resource Evaluation	Intermittent	0		Primary	0.02	0		1	Easement	Evaluation Buffer (Acre			
Tributary 2			Evaluation			14%	Primary	0.41		154	0.1	0.03	Existing Buffer 0.5 Proposed Buffer 0.5		10/	
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	471	80%	1	0.41	154		<u>16</u>	<u>5</u>	Functional Feet	8		
	Piedmont	Existing	Preliminary Resource Evaluation	Intermittent	0		Primary	0.08	0		1	Easement	Evaluation Buffer (Acre) Buffer Quality		
Tributary 3						14%	Primary	0.41		237	0.1	0.03	Existing Buffer 0.8 Proposed Buffer 0.8			
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	723.6	80%	. 1	0.41	237		<u>25</u>	<u>8</u>	Functional Feet	13		
	Piedmont	Existing	Preliminary Resource Evaluation	Intermittent	713		Primary	0.13	125		1	Easement	Evaluation Buffer (Acr) Butter Quality	001	
Tributary 4	Piedmont	Proposed	Restoration/Enhancement	Intermittent	812.6	39%	Primary	0.45 0.13	293	168	0.1 <u>18</u>	0.03 6	Existing Buffer 0.9 Proposed Buffer 0.9	94%		
	Piedmont	Existing	Preliminary Resource	Intermittent	0	80%	Primary	0.06	0		1	Easement	Functional Feet Buffer Evaluation (Acre			
Tributary 5	riedilolii	LXISING	Evaluation	illenillen		14%	1	0.41	•	13	0.1	0.03	Existing Buffer 0.0 Proposed Buffer 0.0	60%	1.5	
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	38.6	80%	Primary 1	0.06	13		1	<u>o</u>	Functional Feet	1	0	
	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Wadeable	252		Primary	4.3	156		1	Improved Protection	Evaluation Buffer (Acre) Buffer Quality		
Cabin Branch (PEPCO)				Perennial		35%	Primary	1.77		235	0.1	-0.03	Existing Buffer 0.3 Proposed Buffer 0.3			
	Piedmont	Proposed	Restoration/Enhancement	Wadeable	280	79%	. 1	1.77	391		24	<u>-8</u>	Functional Feet	<u>5</u>		
	Piedmont	Existing	Preliminary Resource Evaluation	Intermittent	122	39%	Primary	0.13 0.45	21		0.1	Improved Protection -0.03	Evaluation Buffer (Acre Existing Buffer 0.1) Butter Quality		
Trib 4 (PEPCO)						3476	Primary	0.13		23			Proposed Buffer 0.1			
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	123	80%	. 1	0.45	44		3	-1	Functional Feet	<u>2</u>		
	Piedmont	Existing	Preliminary Resource	Intermittent	0		Primary	0.06	0		1	Improved Protection	Evaluation Buffer (Acre			
Trib 5 (PEPCO)		-	Evaluation			14%		0.41		133	0.1	-0.03	Existing Buffer 0.4	007		
	Piedmont	Proposed	Restoration/Enhancement	Intermittent	407		Primary	0.06	133		<u>14</u>	<u>-5</u>	Proposed Buffer 0.4			
						80%	1	0.41					Functional Feet	<u>Z</u>		
	Not Selected	Existing	Preliminary Resource Evaluation	NA	0		NA	0	0		0	Select From List	Evaluation Buffer (Acre			
						0%		FALSE 0		<u>o</u>	0	0	Existing Buffer Proposed Buffer		NA	
	Not Salastad	Proposed	NΔ	NΔ	0		INA		0		0	NΔ	. roposed burier			

Maryland Stream Mitigation Framework Version 1: Stream Buffer Quality Assessment

Project Name:	RFP-2 Cabin Branch	SBAA (Acres):	6.08
CSBA Name:	Cabin Branch	Infrastructure Area (Acres):	0
Assessor(s):	RC	Wetland Area (Acres):	0
Date:	3/10/2022	Area Credited By Other Prog:	0
Latitude(dec. deg):	39.177353	CSBA (Acres):	6.08
Longitude (dec. deg):	-77.199137	Existing Buffer Quality (%)*:	62.9
Corps Permit Number:		Proposed Buffer Quality (%)*:	94.3

General Notes: Cabin Branch riparian conditions are similar throughout the project site so were scored with a composite score for the entire reach.

General Instructions: Identify your **Stream Buffer Assessment Area** (**SBAA**). The Stream Buffer Assessment Area is the area where the Stream Buffer Quality Assessment Metrics 1 and 2 will occur. The SBAA includes the project area (future conservation easement area) for a given stream reach and any inholdings (Easements/infrastructure, credited wetlands, etc between the SBAA boundary and the stream). The SBAA may not exceed 200 feet from the baseflow channel edge. To determine the **Credited Stream Buffer Area (CSBA)**, subtract the Infrastructure Area and Area Credited by other Programs (TMDL, Wetland Credits, Forest Conservation, etc.) from the SBAA. A CSBA should be selected where vegetation or topography changes significantly. Please use the Wetland Delineation Forms applying the appropriate regional supplement to determine the extent of wetlands in the SBAA and to collect vegetation data. In the metrics below, circle the most applicable metric for your assessed area. Please use the comments box below each metric for any discussion items. Mapping is required showing landscape and project context for the SBAA and CSBA. More information can be found in the **MSMF Version 1: Stream Buffer Assessment Detailed Instructions**. Highlighted cells above are MSMF V.1. Mitigation Calculator input values.

Metrics Applied to Stream Buffer Assessment Area (SBAA)

Metric 1: % SBAA as wetlands						
Ranges	50%+	30-49%	15-30%	5-15%	0%	
Existing	4	3	2	1	0	
Proposed	4	3	2	1	0	

Notes: Only POW within the existing buffer. Areas will be converted to PFO to increase wetlands within the buffer area.

	Metric 2: % of SBAA as Utilities/Infrastructure					
Ranges	0	1-5%	5-10%	10-15%	>15%	
Existing	4	3	2	1	0	
Proposed	4	3	2	1	0	

Notes: All utilities have been removed from the credit calculations and buffer scores.

Metrics Applied to Credited Stream Buffer Area (CSBA)

Metric 3: Plant Species Ric	hness in CSBA (MDWAM 2022)

	11100	ic 3. i idiic Species i	ticiliicaa iii cabi t (iiib t	, , , , , , , , , , , , , , , , , , ,	
Ranges	11+	9-10	6-8	2-5	2 or less

Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes: Histo	oric golf course with l			10.1.2.2.	
			er in the CSBA3 (VA Ur	-	
Ranges	>60%	30-60%	10%-29%	1-9%	0%
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
	limited existing trees the historic fairways.		e situated primarily ald		andomly
		Metric 5: # of Stra	ta in CSBA1 (MDWAM	2022)	
Ranges	4+	3	2	1	0
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:					
			ent, and submergent p		-
Ranges	>75%	51-74%	26-50%	<25%	NA
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes: Sinc	e the golf course has	been out of operat	ion for several years t	here is very little bare	areas outside of
the eroding	stream banks.				
	Metric 7: Invasive	Plant Species (Total	al Relative % Cover) in	CSBA ₁ (MDWAM 202	2)
Ranges	<1%	1-10%	11-25%	26-50%	51-100%
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes: Typic	cal invasive species fo	ound throughout th	e region. Due to the la	arge watershed of Cab	in Branch it will
be very diffi	cult to maintain inva	sive species cover b	elow 1%.		
	Metric 8: Mircotopg	raphy and Woody	Debris in CSBA 1,2 (MI	WAM 2022 & MDE 20	021)
Description	Woody debris and topographic deviations widespread, covering	Woody debris and topographic	Occasional woody debris and topographic	Woody debris and topographic deviations very limited (<5% CSBA	Woody debris and
	>15% of the CSBA. Multiple types of woody debris (Snags, downed wood, etc)	deviations common, covering 10-15% of CSBA. Woody debris may lack diversity.	deviations present (Covering 5-9% CSBA) and/or woody debris lacking diversity.	coverage) and/or Either woody debris or topographic deviations absent or scarce.	deviations in topography very scarce or not present
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes: Limit	ced diversity in the rip	parian condition du	e to the historic land u	se as a golf course and	the area being
maintained	over those years.				
	Metric 9: He		st Drainage in CSBA4 (I	·	
Ranges	0-2 ft	2.1-3 ft	3.1-4 ft	4.1-6 ft	>6 ft
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:					

Maryland Stream Mitigation Framework Version 1: Stream Buffer Quality Assessment

Project Name:	RFP-2 Cabin Branch	SBAA (Acres):	2.8
CSBA Name:	Tributaries	Infrastructure Area (Acres):	0
Assessor(s):	RC	Wetland Area (Acres):	0
Date:	3/10/2022	Area Credited By Other Prog:	0
Latitude(dec. deg):	39.177353	CSBA (Acres):	2.8
Longitude (dec. deg):	-77.199137	Existing Buffer Quality (%)*:	60
Corps Permit Number:		Proposed Buffer Quality (%)*:	94.3

General Notes: Tributaries are primarily piped so scored the surrounding buffer in the vicinity of the piped channel.

General Instructions: Identify your Stream Buffer Assessment Area (SBAA). The Stream Buffer Assessment Area is the area where the Stream Buffer Quality Assessment Metrics 1 and 2 will occur. The SBAA includes the project area (future conservation easement area) for a given stream reach and any inholdings (Easements/infrastructure, credited wetlands, etc between the SBAA boundary and the stream). The SBAA may not exceed 200 feet from the baseflow channel edge. To determine the Credited Stream Buffer Area (CSBA), subtract the Infrastructure Area and Area Credited by other Programs (TMDL, Wetland Credits, Forest Conservation, etc.) from the SBAA. A CSBA should be selected where vegetation or topography changes significantly. Please use the Wetland Delineation Forms applying the appropriate regional supplement to determine the extent of wetlands in the SBAA and to collect vegetation data. In the metrics below, circle the most applicable metric for your assessed area. Please use the comments box below each metric for any discussion items. Mapping is required showing landscape and project context for the SBAA and CSBA. More information can be found in the MSMF Version 1: Stream Buffer Assessment Detailed Instructions. Highlighted cells above are MSMF V.1. Mitigation Calculator input values.

Metrics Applied to Stream Buffer Assessment Area (SBAA)

	Metric 1: % SBAA as wetlands						
Ranges	50%+	30-49%	15-30%	5-15%	0%		
Existing	4	3	2	1	0		
Proposed	4	3	2	1	0		

Notes:

	Metric 2: % of SBAA as Utilities/Infrastructure						
Ranges	0	1-5%	5-10%	10-15%	>15%		
Existing	4	3	2	1	0		
Proposed	4	3	2	1	0		

Notes:

Metrics Applied to Credited Stream Buffer Area (CSBA)

Metric 3: Plant Species Richness in CSBA (MDWAM 2022)

	ivietr	ic 3: Plant Species i	Richness in CSBA (IVID)	WAIVI ZUZZ)	
Ranges	11+	9-10	6-8	2-5	2 or less

Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:			•	•	
	Metri	ic 1: % Canony Coy	er in the CSBA3 (VA U	nified 2008)	
Ranges	>60%	30-60%	10%-29%	1-9%	0%
Existing	4	30-0076	2	1-3/0	0
Proposed	4	3	2	1	0
Notes:	4	3		1	0
Notes.					
		Metric 5: # of Stra	ta in CSBA1 (MDWAM	2022)	
Ranges	4+	3	2	1	0
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:					
Meti	ric 6: Total Cover of h	erbaceous, emerge	ent, and submergent p	plants in CSBA1 (MDW	/AM 2022)
Ranges	>75%	51-74%	26-50%	<25%	NA
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:	•				-
	Metric 7: Invasive	Plant Species (Tot	al Relative % Cover) ir	CSBA1 (MDWAM 202	22)
Ranges	<1%	1-10%	11-25%	26-50%	51-100%
Existing	4	3	2	1	0
Proposed	4	3	2	1	0
Notes:					
	Metric 8: Mircotopg	raphy and Woody	Debris in CSBA 1,2 (MI	OWAM 2022 & MDE 2	021)
Description	Woody debris and topographic deviations widespread, covering	Woody debris and topographic deviations common,	Occasional woody debris and topographic deviations present	Woody debris and topographic deviations very limited (<5% CSBA coverage) and/or Either	Woody debris and deviations in
	>15% of the CSBA. Multiple types of woody debris (Snags, downed wood, etc)	· ·	(Covering 5-9% CSBA) and/or woody debris lacking diversity.	woody debris or topographic deviations absent or scarce.	topography very scarce or not present
Existing	Multiple types of woody debris (Snags, downed wood, etc)	covering 10-15% of CSBA. Woody debris may lack diversity.	and/or woody debris lacking diversity.	topographic deviations	scarce or not present
Existing Proposed	Multiple types of woody debris (Snags, downed wood, etc)	covering 10-15% of CSBA. Woody debris may lack diversity.	and/or woody debris lacking diversity.	topographic deviations absent or scarce.	scarce or not present
Existing Proposed	Multiple types of woody debris (Snags, downed wood, etc)	covering 10-15% of CSBA. Woody debris may lack diversity.	and/or woody debris lacking diversity.	topographic deviations absent or scarce.	scarce or not present
Existing	Multiple types of woody debris (Snags, downed wood, etc) 4 4	covering 10-15% of CSBA. Woody debris may lack diversity. 3 3	and/or woody debris lacking diversity.	topographic deviations absent or scarce. 1 1	scarce or not present
Existing Proposed	Multiple types of woody debris (Snags, downed wood, etc) 4 4	covering 10-15% of CSBA. Woody debris may lack diversity. 3 3	and/or woody debris lacking diversity. 2 2	topographic deviations absent or scarce. 1 1	scarce or not present
Existing Proposed Notes:	Multiple types of woody debris (Snags, downed wood, etc) 4 4 Metric 9: He	covering 10-15% of CSBA. Woody debris may lack diversity. 3 3	and/or woody debris lacking diversity. 2 2 st Drainage in CSBA4 (topographic deviations absent or scarce. 1 1 Nobre et al. 2011)	scarce or not present 0 0

Appendix E: Cabin Branch Land Use Vicinity Map

